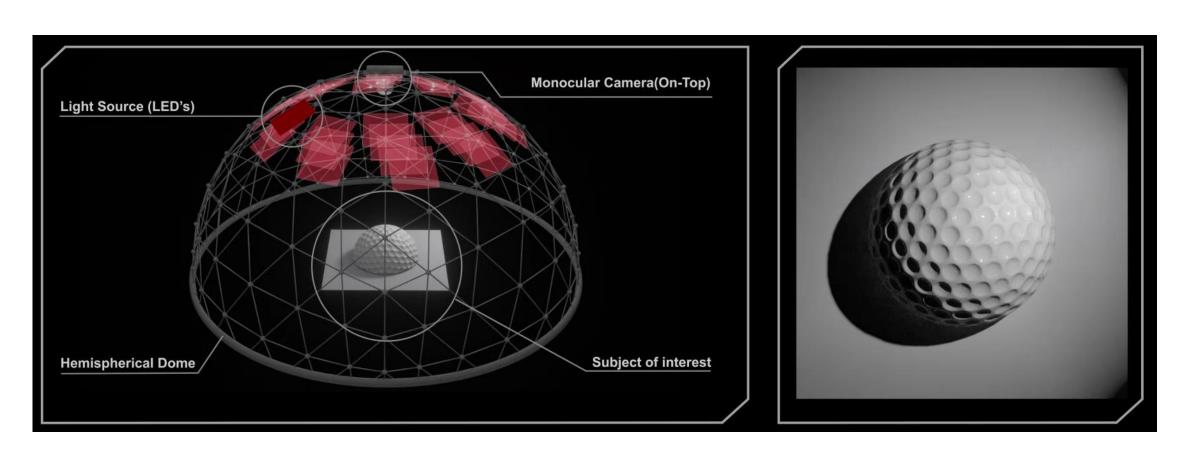


Overview

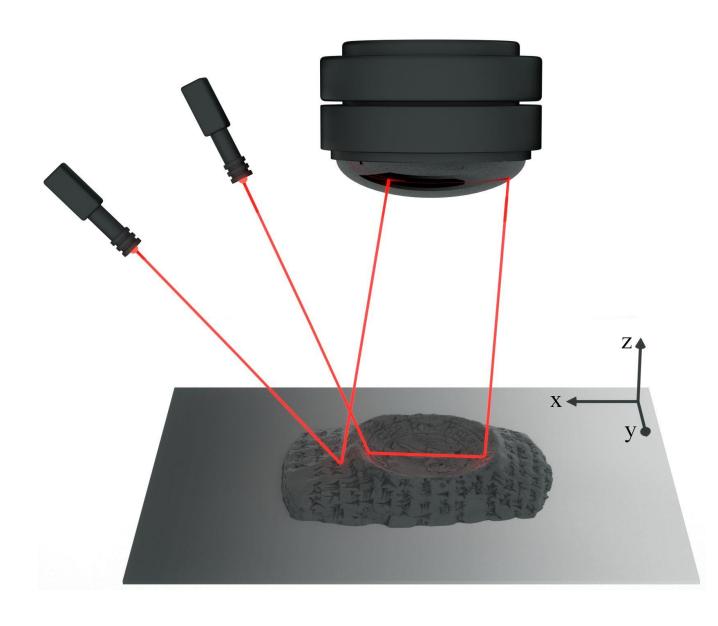
Goal: Estimate surface normals of an object from its light varying images.



Contributions:

- > Uncalibrated deep photometric stereo method that does not require ground-truth surface normals for training.
- Considers the contribution of both the light source and **interreflections** to the image formation process \rightarrow enables to handle objects with concave parts
- ➢ Leverages neural inverse rendering to infer the surface normal, depth and BRDF values from input images.

Image Formation Model



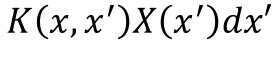
Classical Photometric Stereo Model:

$$\boldsymbol{X_s} = \rho \boldsymbol{N}^T \boldsymbol{L}$$

Interreflection Model:

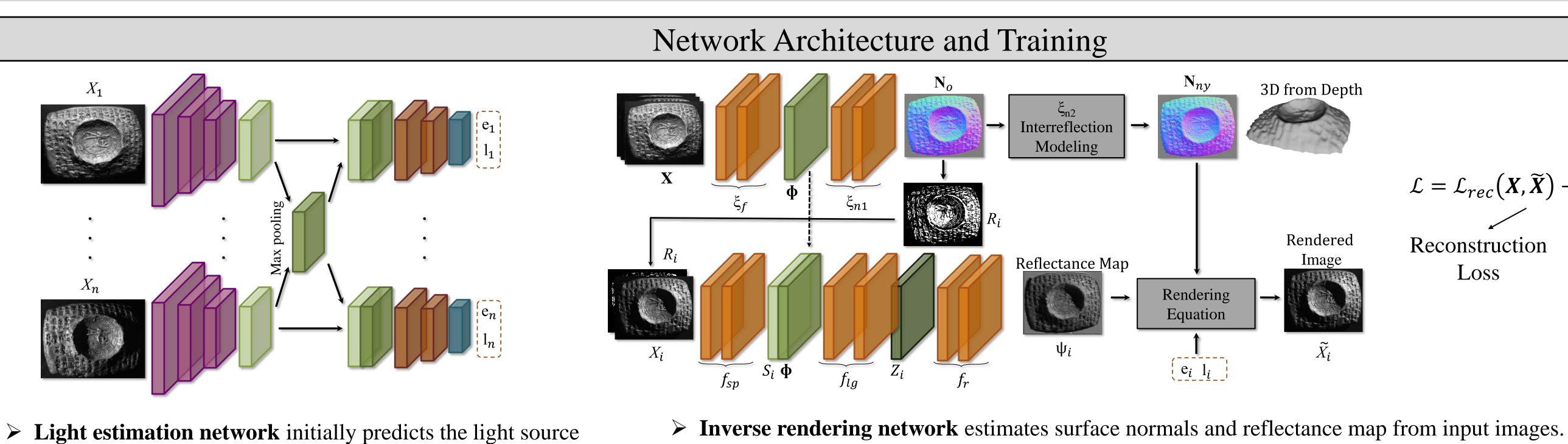
$$X(x) = X_s(x) + \frac{\rho(x)}{\pi} \int_{\Omega} I$$
$$I(x, x') = \left(\frac{\left(n(x)^T(-r)\right) \cdot (n}{(r^T)}\right)}{X} = (I - PK)^{-1}$$

Uncalibrated Neural Inverse Rendering for Photometric Stereo of General Surfaces Berk Kaya¹, Suryansh Kumar¹, Carlos Oliveira¹, Vittorio Ferrari², Luc Van Gool^{1,3} Computer Vision Lab, ETH Zurich¹, Google Research², KU Leuven³



 $n(x')^T r) \cdot V(x, x')$ $(rr)^2$

 X_{s}

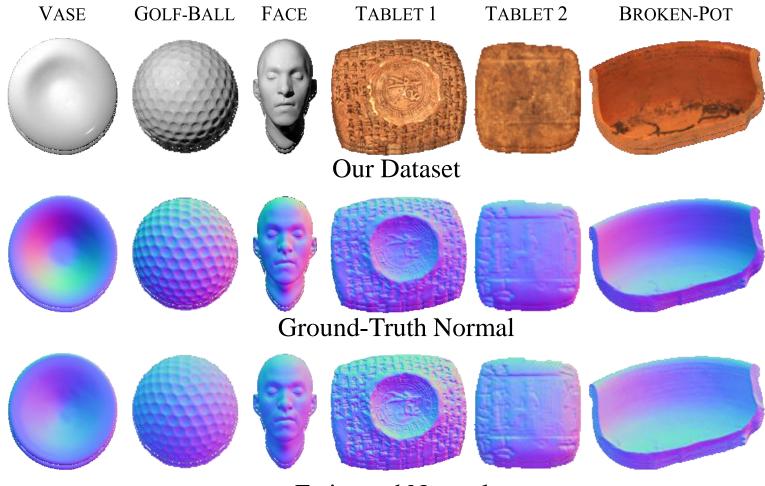


- directions and intensities to resolve Generalized Bas-Relief (GBR) ambiguity.
- > Predicts azimuth, elevation and intensity value of each light source

Results

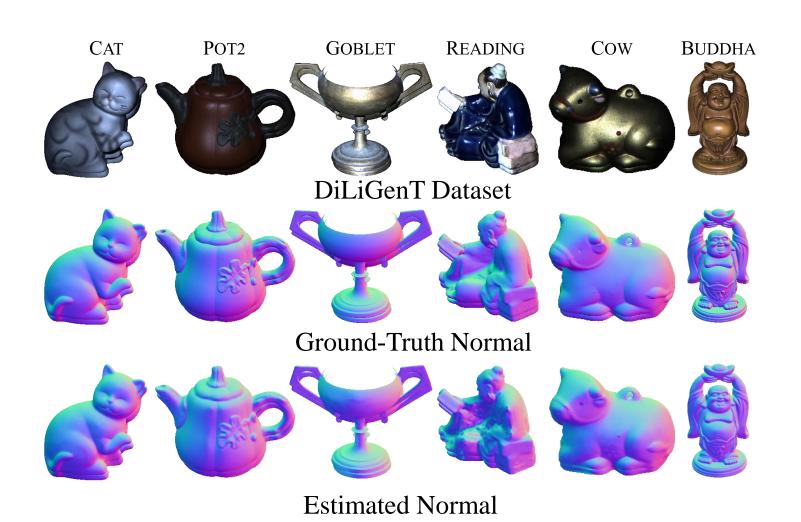
- > We propose a new dataset to study complex surfaces, composed of concave and convex parts.
- > Our method performs consistently well on complex surfaces without using ground-truth surface normals.

Туре	G.T. Normal	$\textbf{Methods}{\downarrow} \mid \textbf{Dataset} \rightarrow$	Vase	Golf-ball	Face	Tablet 1	Tablet 2	Broken Pot	Average
Classical	×	Nayar et al.(1991)	28.82	11.30	13.97	19.14	16.34	19.43	18.17
NN-based	\checkmark	Chen et al.(2018)	35.79	36.14	48.47	19.16	10.69	24.45	29.12
NN-based	\checkmark	Chen et al.(2019)	49.36	31.61	13.81	16.00	15.11	18.34	24.04
NN-based	×	Ours	19.91	11.04	13.43	12.37	13.12	18.55	14.74

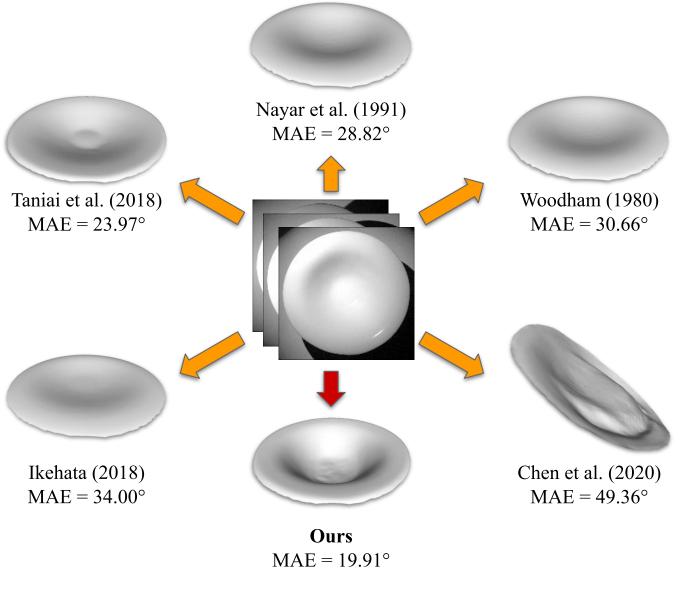


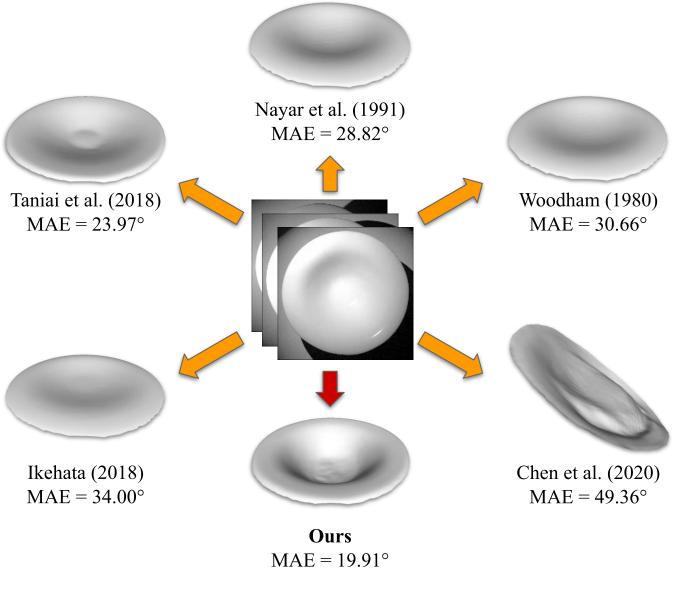
Estimated Norma

> We use estimated normal and reflectance in rendering equation to reconstruct images. \succ Our rendering equation uses interreflection modeling to handle concave surfaces. \blacktriangleright We use an initial normal estimate at early stages to warm-up the network.



- interreflection modeling.
- than supervised approaches.
- and concave parts.





 $\mathcal{L} = \mathcal{L}_{rec}(X, \widetilde{X}) + \lambda_{w} \mathcal{L}_{weak}(N_{ny}, N_{init})$

Reconstruction Loss

Weak Supervision with **Robust Initialization**

Conclusion

➤ Uncalibrated neural inverse rendering framework with explicit

> Without using ground-truth normals, we perform comparable or better

> Our method is applicable to broader range of surfaces, including convex