

Uncalibrated Neural Inverse Rendering for Photometric Stereo of General Surfaces

Berk Kaya¹, Suryansh Kumar¹, Carlos Oliveira¹, Vittorio Ferrari², Luc Van Gool^{1,3} Computer Vision Lab, ETH Zürich¹, Google Research², KU Leuven³

Photometric Stereo

Goal: Estimate surface normals of an object from its light varying images.

Calibrated: Known light sources X Exact calibration is difficult Uncalibrated: Unkown light sources
Better generalizability

Photometric Stereo

Traditional Methods

[Woodham 1980, Wu et al. 2010]

X Simple reflectance models

Deep Learning Methods

[Ikehata 2018, Chen et al. 2019]

- Learn complex BRDF from data
- Require training data with ground-truth normals
- Cannot handle interreflections on concave surfaces

Classical Photometric Stereo Model:

$$\boldsymbol{X_s} = \rho \boldsymbol{N^T} \boldsymbol{L}$$

- ✓ Uncalibrated thanks to light estimation network
- \checkmark Loss on the rendered image \rightarrow does not require ground-truth surface normals
- \checkmark Explicit interreflection modeling in rendering equation \rightarrow enables to handle objects with concave parts

Light Estimation Network

Light directions can be represented by azimuth and elevation angles

$$\mathcal{L}_{calib} = \mathcal{L}_{az} + \mathcal{L}_{ele} + \mathcal{L}_{in}$$

Inverse Rendering Network

Interreflection Model:

$$X(x) = X_{s}(x) + \frac{\rho(x)}{\pi} \int_{\Omega} K(x, x') X(x') dx' \qquad K(x, x') = \left(\frac{\left(n(x)^{T}(-r)\right) \cdot \left(n(x')^{T}r\right) \cdot V(x, x')}{(r^{T}r)^{2}}\right) \longrightarrow X = (I - PK)^{-1} X_{s}$$

© Kaya et. al. (CVPR 2021)

Inverse Rendering Network

© Kaya et. al. (CVPR 2021)

Results on DiLiGenT Dataset

Angular Errors

Results on DiLiGenT Dataset

Туре	G.T. Normal	$\textbf{Methods}{\downarrow} \mid \textbf{Dataset} \rightarrow$	Ball	Cat	Pot1	Bear	Pot2	Buddha	Goblet	Reading	Cow	Harvest	Average
Classical	X	Alldrin et al.(2007)	7.27	31.45	18.37	16.81	49.16	32.81	46.54	53.65	54.72	61.70	37.25
Classical	X	Shi et al.(2010)	8.90	19.84	16.68	11.98	50.68	15.54	48.79	26.93	22.73	73.86	29.59
Classical	X	Wu et al.(2013)	4.39	36.55	9.39	6.42	14.52	13.19	20.57	58.96	19.75	55.51	23.93
Classical	X	Lu et al.(2013)	22.43	25.01	32.82	15.44	20.57	25.76	29.16	48.16	22.53	34.45	27.63
Classical	X	Pap. et al.(2014)	4.77	9.54	9.51	9.07	15.90	14.92	29.93	24.18	19.53	29.21	16.66
Classical	×	Lu et al.(2017)	9.30	12.60	12.40	10.90	15.70	19.00	18.30	22.30	15.00	28.00	16.30
NN-based	✓	Chen et al.(2018)	6.62	14.68	13.98	11.23	14.19	15.87	20.72	23.26	11.91	27.79	16.02
NN-based	✓	Chen et al. $(2018)^{\dagger}$	3.96	12.16	11.13	7.19	11.11	13.06	18.07	20.46	11.84	27.22	13.62
NN-based	✓	Chen et al.(2019)	2.77	8.06	8.14	6.89	7.50	8.97	11.91	14.90	8.48	17.43	9.51
NN-based	X	Ours	3.78	7.91	8.75	5.96	10.17	13.14	11.94	18.22	10.85	25.49	11.62

Comparison against uncalibrated photometric stereo methods on DiLiGenT [Shi et al. 2016]. We report mean angular errors in degrees.

Our Dataset

• We propose a new dataset for analyzing complex surfaces, including both convex and concave parts.

Acquisition Setup

Images

Results on Our Dataset

VASE

Туре	G.T. Normal	$\textbf{Methods}{\downarrow} \mid \textbf{Dataset} \rightarrow$	Vase	Golf-ball	Face	Tablet 1	Tablet 2	Broken Pot	Average
Classical	×	Nayar et al.(1991)	28.82	11.30	13.97	19.14	16.34	19.43	18.17
NN-based	\checkmark	Chen et al.(2018)	35.79	36.14	48.47	19.16	10.69	24.45	29.12
NN-based	\checkmark	Chen et al.(2019)	49.36	31.61	13.81	16.00	15.11	18.34	24.04
NN-based	×	Ours	19.91	11.04	13.43	12.37	13.12	18.55	14.74

TABLET 1

TABLET 2

BROKEN-POT

FACE

GOLF-BALL

Our Dataset Ground-Truth Normal **Estimated Normal**

© Kaya et. al. (CVPR 2021)

Conclusion

- Uncalibrated neural inverse rendering framework with explicit interreflection modeling.
- Performs comparable or better than supervised approaches.
- Applicable to broader range of surfaces, composed of convex and concave parts.

Thank you for your attention!