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Abstract

In our supplementary material, we first present a few
case studies to analyze our method’s effectiveness. Next, we
give a detailed description of our coding implementation for
training and testing the neural network outlined in the main
paper. Formally, this report includes the coding platform
details —both hardware and software, with train and test
time observed across different datasets. Further, mathemat-
ical derivations of our robust initialization and specular-
reflectance map formulations are supplied. Finally, we an-
alyze the light estimation performance and discuss the pos-
sible future extensions of our method. Besides, our supple-
mentary material includes a short video clip that illustrates
the image acquisition setup and visual results.

1. Case Study
This section provides the observation on the case study

that we conducted for our proposed method. It is done to
analyze the behavior of our method under different possible
variations in our experimental setup. Such a study can help
us understand the behavior, pros, and cons of our approach.
Case Study 1: What if we use ground-truth light as input
to inverse rendering network instead of relying on light es-
timation network?

This case study investigates the reliability of our method.
To conduct this experiment, we supplied ground-truth light
source directions and intensities as input to the inverse ren-
dering network and robust initialization. The goal is to
study the expected deviation in the accuracy of surface nor-
mals when ground-truth light sources information is used,
compared to the light calibration network. Table (1) com-
pares our method’s performance with recent deep calibrated
photometric stereo methods on our proposed dataset. The
results show that our inverse rendering method achieves
the best performance in the calibrated setting, although it
does not use a training dataset like other deep-learning-
based methods. Additionally, we observed that the CNNPS
model proposed by Ikehata [28] which performs per-pixel
estimation using observation maps, may not provide accu-

rate surface normals for interreflecting surfaces such as the
Vase and the Broken Pot. Hence, we conclude that extract-
ing information by utilizing the surface geometry is crucial
for solving photometric stereo since all surface points affect
each other.

Moreover, in Table (1), we show the comparison of our
method’s performance under calibrated and uncalibrated
settings. Our method achieves 12.68◦ MAE on average, us-
ing ground-truth light as input. At the same time, it reaches
an average MAE of 14.74◦ utilizing the information of the
light source obtained from the light estimation network.
The difference between these two scores is 2.06 degrees,
which indicates that the gap between the calibrated and un-
calibrated settings is not substantial. Accordingly, we can
conclude that our method is robust to the variations in the
estimated lighting. Further, we observed that our method
performs better with the network estimated light sources
information in the categories like Golf-ball, Face. Hence,
based on that observation, we can conclude that the avail-
ability of ground-truth calibration data is not a strict require-
ment for achieving better surface normals estimates in pho-
tometric stereo for all kinds of surface geometry.
Case Study 2: What if we use noisy images?

Photometric stereo uses a camera acquisition setup, and
this implies that noise due to imaging is inevitable. This
case study aims to investigate the behavior of our method
on different noise levels. To study such a behavior, we
synthesized images by adding noise to the images of our
proposed dataset. Fig.2 compares the performance of our
method under different noise levels. For this case study,
we used zero-mean Gaussian noise with different standard
deviations (σ=0.05, σ=0.1, σ=0.2). The quantitative results
indicate that increasing the noise generally degrades the per-
formance. We observed that the behavior under different
noise levels varies among the subjects.
Case Study 3: Photometric stereo on concentric surfaces
with deep concavities and large surface discontinuity.

To study our photometric stereo method’s boundary-
condition, we took a complex geometric structure with con-
centric surfaces, deep-concavities, and large discontinuities
for investigation. Accordingly, we synthesized the Rose



Type G.T. Normal Methods↓ | Dataset→ Vase Golf-ball Face Tablet 1 Tablet 2 Broken Pot Average Performance
NN-based 3 Ikehata (2018)[28] 34.00 14.96 16.61 16.64 12.32 18.31 18.81
NN-based 3 Chen et al.(PS-FCN)(2018)[12] 27.11 15.99 16.17 10.23 5.79 8.68 14.00
NN-based 7 Ours (Ground-truth light/ calibrated) 16.40 14.23 14.24 10.77 4.49 15.92 12.68
NN-based 7 Ours (Estimated light/ uncalibrated) 19.91 11.04 13.43 12.37 13.12 18.55 14.74

Diff. in MAE (Ours(Est)-Ours(GT)) +3.51 -3.19 -0.81 +1.60 +8.63 +2.63 +2.06

Table 1: Comparison of recent deep calibrated photometric stereo methods Ikehata [28] and Chen et al. [12] (PS-FCN) against our method under
uncalibrated and calibrated setting. For testing our method under the calibrated setting, we evaluate the performances assuming that ground-truth light
source directions and intensities are available. Note that Chen et al. [12] and Ikehata [28] additionally uses ground-truth surface normals for training, in
contrast to our method. The last row shows the difference between our method results when used under uncalibrated and calibrated setting respectively. We
can see that the average difference in MAE between the two settings of our method is not significant.
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Figure 1: Failure case: Qualitative results on the Rose
dataset.

dataset using the same dome-settings outlined in the main
paper. Fig.1 shows the qualitative results obtained on this
dataset. Our method achieves 60.82 degrees of MAE on
this particular example. We observed that our approach
could not handle this complex geometry because the sur-
face is highly discontinuous with excessive gaps between
the leaves. The scene is also affected by occlusions and
cast shadows, and therefore, modeling the interreflections
for this case seems very difficult.

Though our method applies to a broad range of objects,
our interreflection modeling is inspired by Nayar et al. [49]
formulation, which may not hold for all kinds of surfaces.
The interreflection modeling computes depth from the nor-
mal map under the continuous surface assumption, which
fails in this case study. Furthermore, it models continuous
surfaces with discrete facets. Due to such limitations, our
method may not be suitable for concentric surfaces with
deep concavities and large discontinuities. In such cases,
the interreflection effect is very complicated, and our ap-
proach may disappoint to model such complex light phe-
nomena.

2. Coding Details
This section provides a detailed description of our source

code implementation. We start by introducing the light es-
timation network’s training phase. Then we focus on the
testing phase, where the inverse rendering network is op-
timized to estimate the surface normals, depth, and BRDF
values. Finally, we present details on training and testing
run-times.

2.1. Training Details

As our inverse rendering network optimizes its learnable
parameters at the test time, we apply a training stage only to
the light estimation network. For training the network, we

Noise Std (σ) Vase Golf-ball Face Tablet1 Tablet2 Broken Pot Average

0.0 19.91 11.01 13.43 12.37 13.12 18.55 14.73

0.05 21.96 11.54 12.94 17.25 11.22 17.22 15.36

0.1 25.01 11.83 15.12 18.80 11.55 19.06 16.90

0.2 24.41 14.25 19.62 21.27 10.07 18.16 17.96
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Figure 2: The performance of our method against different noise lev-
els. We used zero-mean Gaussian noise (µ = 0) with different standard
deviations (σ). We observed that increasing the noise level generally de-
grades the performance. Still, the behavior under different noise levels
varies among the subjects as the performance depends on the signal-to-
noise ratio of the images.

used Blobby and Sculpture datasets that are introduced by
Chen et al. [12]. This dataset is created by using 3D geome-
tries of Blobby [33], and Sculpture [68] shape datasets and
combining them with different material BRDFs taken from
MERL dataset [46]. In total, the complete dataset contains
85212 subjects. For each subject, there exist 64 renderings
with different light source directions. The intensity of the
light sources is kept constant during the whole data genera-
tion process. To simulate different intensities during train-
ing, image intensity values are randomly generated in the
range of [0.2, 2], and these intensity values are used to scale
the image data linearly. In each training iteration, the input
data is perturbed in the range of [−0.025, 0.025] for aug-
mentation.

The light estimation network is a multiple-input
multiple-output (MIMO) system which requires images of
the same object captured under different illumination condi-
tions (see Fig.3). The core idea is that all input images have
the same surface, and having more images helps the net-
work extract better global features. During training, we use
32 images of the same object for global feature extraction.
Note that all of the images are used for feature extraction at
test time to achieve the best performance from the network.
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Figure 3: Architecture of the light estimation network. The network first extracts features from the input images separately using feature
extraction layers (purple). Then, the extracted image-specific features (light-green) are fused with max-pooling operation to obtain a global representation
of the entire scene (dark-green). Finally, all image-specific and global features are used in classifier network where convolution (brown) and fully-connected
(blue) layers are used to predict light intensity values (ei’s) and direction vectors (li’s).

2.2. Testing Details

Given a set of test images X and object mask O, we
first use the light estimation network to have light source di-
rections and intensities. However, the light estimation net-
work operates on 128 × 128 images because it uses fully
connected layers for classification, and these layers process
only fixed-length vectors. Consequently, we scale the input
images into the resolution of 128×128 before feeding them
to the network. We apply this pre-processing step only for
the light estimation network and use the original image size
for all other operations during testing.

Once we obtain the light source directions and intensi-
ties, we apply the robust initialization algorithm to get an
initial surface normal matrix Ninit. It also provides an
albedo map that is transformed into P ∈ Rm×m which is
required for interreflection modeling. Details about the ro-
bust initialization method are explained and derived in §3.1.

After the robust initialization process, we start the op-
timization of our inverse rendering framework. First, we
initialize all the network parameters (Θf , Θn1, Θsp, Θlg

Θri) which correspond to the weights of the convolution
operations. In this step, we initialize the weights randomly
by sampling from a Gaussian distribution with zero mean
and 0.02 variance. We perform 1000 iterations in total us-
ing Adam optimizer [34] with an initial learning rate of
8 × 10−4. The learning rate is reduced by a factor of 10
after 900 iterations for fine-tuning. We observed that setting
these hyperparameters may result in convergence problems
in our dataset. For this reason, we set the initial learning
rate of the estimation branch (ξf and ξn1) to 8×10−5 while
experimenting on our dataset. We also inject Gaussian noise
with zero mean and 0.1 variance to the images before feed-
ing them to fsp for image reconstruction. We observed that
this prohibits the network from generating degenerate solu-

tions. At every 100 iterations, we update the depth and the
interreflection kernel matrix entries using the normal esti-
mation No.
(a) Depth: To compute the depth from normals, we use a
gradient-based method with surface orientation constraint
[3]. Given the surface normals, we first compute a gradient
field Ĝ ∈ Rh×w×2 where h and w are the spatial dimen-
sions. The idea is that the gradient field computed from
surface normal map and the estimated depth D ∈ Rh×w
should be consistent, i.e., ∇D ≈ Ĝ. That corresponds to
an overdetermined system of linear equations and is solved
by minimizing the following objective function i.e., Eq:(1)
using the least-squares approach

min.
D
‖∇D− Ĝ‖2 (1)

(b) Interreflection Modeling: To consider the effect of in-
terreflection during the image reconstruction process, we
define the function ξn2 which uses the estimated normal
No ∈ R3×m, albedo matrix P ∈ Rm×m and the inter-
reflection kernel K ∈ Rm×m. Given all these components,
Nayar et al. [49] relates the observed radiance (X) and the
radiance due to primary light source (Xs) as follows:

X = (I−PK)−1Xs (2)

Assuming the surface shows Lambertian reflectance
property, we model the radiance in terms of facet matrices
as follows:

X = FnyL, Xs = FL, ⇒ Fny = (I−PK)−1F (3)

Here Fny ∈ Rm×3 and F ∈ Rm×3 are the facet matri-
ces which contain surface normals Nny and No scaled with
local reflectance value. We use Eq:(3) to obtain Fny and
normalize each row to unit vector to obtain Nny .
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Figure 4: We present visual results of our method on all of the DiLiGenT categories. The bottom row demonstrates the
angular error maps obtained form our estimations and ground-truth normals.

The computation of the interreflection kernel K has the
complexity of O(n2) where n is the number of facets.
Therefore, treating each pixel as a facet limits the applica-
tion of our method. To approximate the effect of interreflec-
tions, we downsample the normal maps with the factor of 4
and calculated the kernel values accordingly. After the nor-
mal is updated, we scale it to the original size managing the
image details appropriately.

2.3. Timing Details

Our framework is implemented in Python using PyTorch
version 1.1.0. Table (2) provides the light estimation net-
work’s training time and the inference time of neural inverse
rendering network on two datasets separately.

3. Mathematical Derivations
Here, we supply the mathematical derivation pertaining

to the initialization of the surface normals to the inverse ren-
dering network. For completion, we also supplied the well-
known deviation of reflection vector §3.2.

3.1. Robust Initialization

Our surface normals initialization procedure aims at re-
covering the low rank matrix Z ∈ Rm×n from the image
matrix X ∈ Rm×n such that X = Z+E where E ∈ Rm×n
is the matrix of outliers. Here, we assume that the low-
rank matrix follows the classical photometric stereo model
(Z = NTL) and the outlier matrix E is sparse in its distri-
bution. Since it is known by definition that Z spans a rank-

GPU Time
Training of Light Estimation Network Titan X Pascal (12GB) ≈ 22 hours

Inference on DiLiGenT GeForce GTX TITAN X (12GB) 53.41± 41.57 min per subject
Inference on our Dataset GeForce GTX TITAN X (12GB) 29.08± 15.99 min per subject

Table 2: Measured training and testing time with respect to the utilized
hardware. For our dataset, we have 100 to 260 images per subject and
the DiLiGenT dataset has 96 images per subject. Note: Deep photometric
stereo method processes a set of images rather than one image for estimat-
ing normals.

3 space, it can be formulated as a standard RPCA problem
[71]. However, we know that RPCA formulation performs
the nuclear norm minimization of Z matrix which not only
minimizes the rank but also the variance of Z within the tar-
get rank. Now, for the photometric stereo model, it is easy
to infer that N lies in a rank 3 space. As the true rank for
Z is known from its mathematical construction, we do not
want to minimize the subspace variance within the target
range. Nevertheless, this strict constraint is difficult to meet
due to the complex imaging model, and therefore, we en-
courage to preserve the variance of information within the
target range while minimizing the other singular values out-
side the target rank (K). So, we minimize the partial sum
of the singular values which are outside the target rank with
the following optimization as follows:

minimize
Z,E

‖Z‖r=K + λ‖E‖1, subject to: X = Z + E

(4)

The Augmented Lagrangian function of Eq:(4) can be
written as follows:



L(Z,E,Y) = ‖Z‖r=K + λ‖E‖1 +
µ

2
‖X− Z−E‖2F+

< Y,X− Z−E >
(5)

Here, µ is a positive scalar and Y ∈ Rm×n is the esti-
mate of the Lagrange multiplier. As minimizing this func-
tion is challenging, we solve it by utilizing the alternating
direction method of multipliers (ADMM)[8, 50, 40]. Ac-
cordingly, the optimization problem in Eq:(5) can be di-
vided into sub-problems, where Z, E and Y are updated
alternatively while keeping the other variables fixed.
1. Solution to Z:

Z∗ = argmin
Z
‖Z‖r=K +

µk
2
‖Z− (X−Ek + µ−1k Yk)‖2F

(6)
The solution to Eq:(6) sub-problem at kth itera-

tion is given by Zk = PK,µ−1
k

[X − Ek + µ−1k Yk]

where, PK,τ [M] = UM(ΣM1 + Sτ [ΣM2 ])VT
M is the

partial singular value thresholding operator [50] and
Sτ [x] = sign(x) max(|x| − τ, 0) is the soft-thresholding
operator [23]. Here, UM,VM are the singular vec-
tor of matrix M and ΣM1 = diag(σ1, σ2, ...σK , 0, 0),
ΣM2 = diag(0, 0, .., σK+1, .., σN ).

2. Solution to E:

E∗ = argmin
E

λ‖E‖1 +
µk
2
‖E− (X− Zk+1 + µ−1k Yk)‖2F

(7)
The solution to Eq:(7) sub-problem at kth iteration is
given by Ek = Sλµ−1

k
[X − Zk+1 + µ−1k Yk] where,

Sτ [x] = sign(x) max(|x| − τ, 0) is a soft-thresholding
operator [23]. For proof of convergence and theoretical
analysis of partial singular value thresholding operator
kindly refer to Oh et al. [50] work. We solve for Z, E using
ADMM until convergence for K = 3 and use the obtained
surface normals for initializing the loss function of inverse
rendering network.

3. Solution to Y: The variable Y is updated as follows over
the iteration:

Yk+1 = Yk + µk(X− Zk+1 −Ek+1) (8)

For more details on the implementation kindly refer to Oh
et al. [50] method.

3.2. Derivation of Specular-Reflection Equation 11
in the Main Paper

For completion, we derive Equation 11 of the main pa-
per that is used to compute the specular-reflection map
Ri ∈ Rh×w×1 for each image. To compute it, we first com-
pute rxi for each point x that is the direction vector with

li

no(x)

rxi v

x

𝜃
𝜃

Figure 5: Illustration of surface reflectance. When light
ray li hits a surface element, the specular component along
the view-direction of the point x due to ith source is given
by rxi. This presentation of 3D geometry is inspired by
Keenan work [17].

the highest specular component using the following well-
known relation; assuming li, and no as unit length vectors:

rxi + li = 2cos(θ).no(x); no(x)T li = cos(θ)

rxi = 2
(
no(x)T li)no(x

)
− li

(9)

Here, rxi is also a unit length vector (see Fig.5). The com-
ponent of specular reflection in the view-direction v =
(0, 0, 1)T of the point x due to ith light is computed as:

rxi = vT
(

2
(
no(x)T li)no(x

)
− li

)
(10)

The above relation show that the specular highlights are
strongest if the normal no(x) is closest to rxi. Performing
this operation for each point gives us the specular-reflection
map Ri.

4. Statistical Analysis of Estimated Light
Source Directions

We aim to investigate the source directions’ behavior
predicted by the light estimation network (Fig.3). For that
purpose, we use a well-known setup used for light calibra-
tion, i.e., a calibration sphere. Our renderings from the cal-
ibration sphere (see Fig.6(a)) has specular highlights and
attached shadows, which provide useful cues for the light
estimation network. Figures 6(b)-6(d) illustrate the x, y
and z components of the estimated light source direction
and ground-truth with respect to the images. We measured
the MAE between these vectors as 6.31 degrees. We also
observed that the x and y components match well with the
ground-truth values. On the other hand, we observed fluctu-
ations on the z component where the values slightly deviate
from the ground-truth in a specific pattern. One possible ex-
planation for this observation is that the network has a bias
such that its behavior changes in the different regions of the
lighting space. Since we generated the data by moving the
light source on a circular pattern around z-axis, Fig. 6(d)
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Figure 6: Light source directions obtained from the calibration sphere (a) using the light estimation network. We demonstrate the x,y and z components
of the light direction vectors (b-d). The mean angular error between the ground-truth and estimated light directions is 6.31 degrees.

also follows a similar pattern with the same frequency with
x and y components’ curves.

5. More Qualitative Results Comparison on
our Dataset

Here, we present qualitative results on all of the cate-
gories of our proposed dataset. Figure 7 to Figure 12 com-
pares the output normal maps of our method with other
baselines. Note that our implementation of Nayar et al.
[49] uses Woodham’s classical photometric stereo [69] to
calculate the pseudo surface and updates the normals with
the interreflection modeling for 15 iterations. Even though
the Nayar et al. [49] interreflection algorithm is not theo-
retically guaranteed to converge for all surfaces, it gives a
stable response on our dataset. We initialized Nayar’s algo-
rithm using the same predicted light sources of our method
for a fair comparison.

The results show that our method achieves the best re-
sults overall, both qualitatively and quantitatively. We ob-
served that other deep learning networks [12, 10] may fail to
remove the surface ambiguity in challenging subjects. This
is because these networks require supervised training with
ground-truth normals, and their performance depends on the
content of the training dataset. On the other hand, the results
show that Nayar et al. [49] performs much better on chal-
lenging concave shapes. However, it cannot model spec-
ularities and cast shadows. On the other hand, our method
can model these non-Lambertian effects with the reflectance
mapping, and therefore, it performs better than Nayar et al.
in all the tested categories.

Lastly, we provide the reflectance map obtained using
our method on the proposed dataset. Figure 13 and Figure
14 show the reflectance map obtained using our method on
the synthetic and real sequence respectively.

6. Some General Comments

Q1: Influence of complex texture on the light estima-
tion. Indeed, surface texture is can be important for light
estimation. However, the present benchmark datasets i.e.,

Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading
985 2808 3601 2585 2193 2787 1636 1723
Cow Harvest Vase Golf-ball Face Tablet 1 Tablet 2 Broken Pot
1651 3582 1280 468 435 1610 437 1046

Table 3: Number of facets per subject used for our experiments.

DiLiGenT is composed of textureless subjects, and there-
fore, our focus was to perform surface reconstruction on
textureless objects.

Q2: Nayar interreflection model vs. Monte Carlo:
Monte Carlo method can provide more photo-realistic ren-
derings. However, such an approach is again expensive, re-
quires analytic BRDF models, and a sophisticated sampling
strategy for computation, which can make the pipeline bet-
ter, but more involved. So, we favored Nayar’s method and
used reflectance maps to handle non-Lambertian effects.
Q3: Number of parameters for the normal estimation net-
work and interreflection kernel computation: The inverse
rendering network has ≈3.7 million parameters (12.3 MB).
The interreflection kernel is generally sparse, and efficient
software are available to handle large-sized sparse matrices.
Table (3) provides the number of facets used for our exper-
iments to calculate the interreflection kernel.

7. Other Possible Future Extension
Our proposed method enables the application of photo-

metric stereo on a broader range of objects. Yet, we think
that there are possible future directions to extend it. Firstly,
our method is generally a two-stage framework that uti-
lizes a light estimation network and inverse rendering net-
work in separate phases during inference. As an exten-
sion of our work, we aim to combine those stages in an
end-to-end framework where light, surface normals, and re-
flectance values are estimated simultaneously. Secondly,
our method uses a physical rendering equation for image
reconstruction that is not sufficient for modeling all phys-
ical interactions between the object and the light. We be-
lieve that an improved rendering equation with additional
physical constraints will allow better normal estimates. In
addition to that, our method utilizes a specular-reflectance
map inspired by the Phong reflectance model. Using other
sophisticated variants of specular-reflectance map such as



Nayar et al. (1991) Chen et al. (2018) Chen et al. (2019) Ours
Ground-truth/
Input Image
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90°
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Figure 7: Qualitative comparison on the Vase scene. Here, it is obvious
that previous deep learning based methods fail to handle the concavity of
the subject. In contrast, our method works reasonably well showing the
competence of our modeling procedure.

MAE = 31.61°

Nayar et al. (1991) Chen et al. (2018) Chen et al. (2019) Ours
Ground-truth/
Input Image

MAE = 11.30° MAE = 36.14° MAE = 11.04°

90°

0°

Figure 8: Qualitative comparison on the Golf-ball scene. Although deep
learning based methods perform well smooth objects, they cannot handle
fine structures and indentations.

Nayar et al. (1991) Chen et al. (2018) Chen et al. (2019) Ours
Ground-truth/
Input Image

MAE = 13.97° MAE = 48.47° MAE = 13.81° MAE = 13.43°

90°

0°

Figure 9: Qualitative comparison on the Face scene. Although Nayar et
al. [49] models interreflections, it cannot handle cast shadows. Therefore,
it performs poorly on regions surrounding the eyes and the nose where cast
shadows are effective. Here, we also observe that Chen et al. [12] cannot
estimate accurately for higher slant angles.

the Blinn-Phong reflection model [7] may further advance
our approach. Finally, we observed that our method is very
convenient for practical usage as it doesn’t require ground-
truth normals for supervised training. However, it could be
possible to improve performance by utilizing training data
in a similar framework.

Nayar et al. (1991) Chen et al. (2018) Chen et al. (2019) Ours
Ground-truth/
Input Image

MAE = 19.14° MAE = 19.16° MAE = 16.00° MAE = 12.37°

90°

0°

Figure 10: Qualitative comparison on the Tablet1 scene. This subject
has a complicated geometry involving cuneiform and reliefs. Apart from
these fine structures, the object can be treated as a composite surface which
has a large concavity in the middle part.

Nayar et al. (1991) Chen et al. (2018) Chen et al. (2019) Ours
Ground-truth/
Input Image

MAE = 16.34° MAE = 10.69° MAE = 15.11° MAE = 13.12°

90°

0°

Figure 11: Qualitative comparison on the Tablet2 scene. Similar to
Tablet1, this subject also contains reliefs and cuneiform scripts. Since the
overall geometry is approximately flat, all methods perform comparable
on this category.

Nayar et al. (1991) Chen et al. (2018) Chen et al. (2019) Ours
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Figure 12: Qualitative comparison on the Broken Pot scene.
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(a) VASE

(b) GOLF-BALL

(c) FACE

Figure 13: Reflectance maps obtained with our method from Vase,
Golf-ball and Face categories.
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(a) TABLET1

(b) TABLET2

(c) BROKEN POT

Figure 14: Reflectance maps obtained with our method from Tablet1,
Tablet2 and Broken Pot categories.
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