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ABSTRACT

We introduce VA-DepthNet, a simple, effective, and accurate deep neural network
approach for the single-image depth prediction (SIDP) problem. The proposed
approach advocates using classical first-order variational constraints for this prob-
lem. While state-of-the-art deep neural network methods for SIDP learn the scene
depth from images in a supervised setting, they often overlook the invaluable in-
variances and priors in the rigid scene space, such as the regularity of the scene.
The paper’s main contribution is to reveal the benefit of classical and well-founded
variational constraints in the neural network design for the SIDP task. It is shown
that imposing first-order variational constraints in the scene space together with
popular encoder-decoder-based network architecture design provides excellent re-
sults for the supervised SIDP task. The imposed first-order variational constraint
makes the network aware of the depth gradient in the scene space, i.e., regular-
ity. The paper demonstrates the usefulness of the proposed approach via extensive
evaluation and ablation analysis over several benchmark datasets, such as KITTI,
NYU Depth V2, and SUN RGB-D. The VA-DepthNet at test time shows consid-
erable improvements in depth prediction accuracy compared to the prior art and
is accurate also at high-frequency regions in the scene space. At the time of writ-
ing this paper, our method—labeled as VA-DepthNet, when tested on the KITTI
depth-prediction evaluation set benchmarks, shows state-of-the-art results, and is
the top-performing published approach1 2.

1 INTRODUCTION

Over the last decade, neural networks have introduced a new prospect for the 3D computer vision
field. It has led to significant progress on many long-standing problems in this field, such as multi-
view stereo (Huang et al., 2018; Kaya et al., 2022), visual simultaneous localization and mapping
(Teed & Deng, 2021), novel view synthesis (Mildenhall et al., 2021), etc. Among several 3D vision
problems, one of the challenging, if not impossible, to solve is the single-image depth prediction
(SIDP) problem. SIDP is indeed ill-posed—in a strict geometric sense, presenting an extraordinary
challenge to solve this inverse problem reliably. Moreover, since we do not have access to multi-view
images, it is hard to constrain this problem via well-known geometric constraints (Longuet-Higgins,
1981; Nistér, 2004; Furukawa & Ponce, 2009; Kumar et al., 2019; 2017). Accordingly, the SIDP
problem generally boils down to an ambitious fitting problem, to which deep learning provides a
suitable way to predict an acceptable solution to this problem (Yuan et al., 2022; Yin et al., 2019).

Impressive earlier methods use Markov Random Fields (MRF) to model monocular cues and the
relation between several over-segmented image parts (Saxena et al., 2007; 2008). Nevertheless, with
the recent surge in neural network architectures (Krizhevsky et al., 2012; Simonyan & Zisserman,
2015; He et al., 2016), which has an extraordinary capability to perform complex regression, many
current works use deep learning to solve SIDP and have demonstrated high-quality results (Yuan
et al., 2022; Aich et al., 2021; Bhat et al., 2021; Eigen et al., 2014; Fu et al., 2018; Lee et al., 2019;
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2021). Popular recent methods for SIDP are mostly supervised. But even then, they are used less
in real-world applications than geometric multiple view methods (Labbé & Michaud, 2019; Müller
et al., 2022). Nonetheless, a good solution to SIDP is highly desirable in robotics (Yang et al., 2020),
virtual-reality (Hoiem et al., 2005), augmented reality (Du et al., 2020), view synthesis (Hoiem et al.,
2005) and other related vision tasks (Liu et al., 2019).

In this paper, we advocate that despite the supervised approach being encouraging, SIDP advance-
ment should not wholly rely on the increase of dataset sizes. Instead, geometric cues and scene
priors could help improve the SIDP results. Not that scene priors have not been studied to improve
SIDP accuracy in the past. For instance, Chen et al. (2016) uses pairwise ordinal relations between
points to learn scene depth. Alternatively, Yin et al. (2019) uses surface normals as an auxiliary
loss to improve performance. Other heuristic approaches, such as Qi et al. (2018), jointly exploit the
depth-to-normal relation to recover scene depth and surface normals. Yet, such state-of-the-art SIDP
methods have limitations: for example, the approach in Chen et al. (2016) - using ordinal relation to
learn depth - over-smooths the depth prediction results, thereby failing to preserve high-frequency
surface details. Conversely, Yin et al. (2019) relies on good depth map prediction from a deep
network and the idea of virtual normal. The latter is computed by randomly sampling three non-
collinear points with large distances. This is rather complex and heuristic in nature. Qi et al. (2018)
uses depth and normal consistency, which is good, yet it requires good depth map initialization.

This brings us to the point that further generalization of the regression-based SIDP pipeline is re-
quired. As mentioned before, existing approaches in this direction have limitations and are complex.
In this paper, we propose a simple approach that provides better depth accuracy and generalizes well
across different scenes. To this end, we resort to the physics of variation (Mollenhoff et al., 2016;
Chambolle et al., 2010) in the neural network design for better generalization of the SIDP network,
which by the way, keeps the essence of affine invariance (Yin et al., 2019). An image of a general
scene—indoor or outdoor, has a lot of spatial regularity. And therefore, introducing a variational
constraint provides a convenient way to ensure spatial regularity and to preserve information related
to the scene discontinuities (Chambolle et al., 2010). Consequently, the proposed network is trained
in a fully-supervised manner while encouraging the network to be mindful of the scene regularity
where the variation in the depth is large (cf. Sec.3.1). In simple terms, depth regression must be
more than parameter fitting, and at some point, a mindful decision must be made—either by imag-
ing features or by scene depth variation, or both. As we demonstrate later in the paper, such an idea
boosts the network’s depth accuracy while preserving the high-frequency and low-frequency scene
information (see Fig.1).

Our neural network for SIDP disentangles the absolute scale from the metric depth map. It models
an unscaled depth map as the optimal solution to the pixel-level variational constraints via weighted
first-order differences, respecting the neighboring pixel depth gradients. Compared to previous
methods, the network’s task has been shifted away from pixel-wise metric depth learning to learn-
ing the first-order differences of the scene, which alleviates the scale ambiguity and favors scene
regularity. To realize that, we initially employ a neural network to predict the first-order differences
of the depth map. Then, we construct the partial differential equations representing the variational
constraints by reorganizing the differences into a large matrix, i.e., an over-determined system of
equations. Further, the network learns a weight matrix to eliminate redundant equations that do not
favor the introduced first-order difference constraint. Finally, the closed-form depth map solution is
recovered via simple matrix operations.

When tested on the KITTI (Geiger et al., 2012) and NYU Depth V2 (Silberman et al., 2012) test
sets, our method outperforms prior art depth prediction accuracy by a large margin. Moreover, our
model pre-trained on NYU Depth V2 better generalizes to the SUN RGB-D test set.

2 PRIOR WORK

Depth estimation is a longstanding task in computer vision. In this work, we focus on a fully-
supervised, single-image approach, and therefore, we discuss prior art that directly relates to such
approach. Broadly, we divide the popular supervised SIDP methods into three sub-categories.

(i) Depth Learning using Ranking or Ordinal Relation Constraint. Zoran et al. (2015) and
Chen et al. (2016) argue that the ordinal relation between points is easier to learn than the metric
depth. To this end, Zoran et al. (2015) proposes constrained quadratic optimization while Chen
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(a) Image (b) AdaBins (c) NeWCRFs (d) Ours

Figure 1: Qualitative comparison of our method’s depth result with recent state-of-the-art methods such as
AdaBins (Bhat et al., 2021), NeWCRFs (Yuan et al., 2022) on NYU Depth V2 test set (Silberman et al., 2012).
It can be observed that our method predicts high-frequency details better than other recent methods.

et al. (2016) relies on the variation of the inception module to solve the problem. Later, Xian et al.
(2020) proposes structure-guided sampling strategies for point pairs to improve training efficiency.
Recently, Lienen et al. (2021) elaborates on the use of listwise ranking method based on the Plackett-
Luce model (Luce, 2012). The drawback of such approaches is that the ordinal relationship and
ranking over smooth the depth solution making accurate metric depth recovery challenging.

(ii) Depth Learning using Surface Normal Constraint. Hu et al. (2019) introduces normal loss
in addition to the depth loss to overcome the distorted and blurry edges in the depth prediction.
Yin et al. (2019) proposes the concept of virtual normal to impose 3D scene constraint explicitly
and to capture the long-range relations in the depth prediction. The long-range dependency in 3D
is introduced via random sampling of three non-colinear points at a large distance from the virtual
plane. Lately, Long et al. (2021) proposes an adaptive strategy to compute the local patch surface
normals at train time from a set of randomly sampled candidates and overlooks it during test time.

(iii) Depth Learning using other Heuristic Refinement Constraint. There has been numerous
works attempt to refine the depth prediction as a post-processing step. Liu et al. (2015), Li et al.
(2015) and Yuan et al. (2022) propose to utilize the Conditional Random Fields (CRF) to smooth
the depth map. Lee et al. (2019) utilizes the planar assumptions to regularize the predicted depth
map. Qi et al. (2018) adopts an auxiliary network to predict the surface normal, and then refine the
predicted depth map following their proposed heuristic rules. There are mainly two problems with
such approaches: Firstly, these approaches rely on a good depth map initialization. Secondly, the
heuristic rules and the assumptions might result in over-smoothed depth values at objects boundaries.

Meanwhile, a few works, such as Ramamonjisoa et al. (2020), Cheng et al. (2018), Li et al. (2017)
were proposed in the past with similar inspirations. Ramamonjisoa et al. (2020), Cheng et al. (2018)
methods are generally motivated towards depth map refinement predicted from an off-the-shelf net-
work. On the other hand, Cheng et al. (2018) proposes to use an affinity matrix that aims to learn
the relation between each pixel’s depth value and its neighbors’ depth values. However, the affinity
matrix has no explicit supervision, which could lead to imprecise learning of neighboring relations
providing inferior results. On the contrary, our approach is mindful of imposing the first-order dif-
ference constraint leading to better performance. Earlier, Li et al. (2017) proposed two strategies
for SIDP, i.e., fusion in an end-to-end network and fusion via optimization. The end-to-end strategy
fuses the gradient and the depth map via convolution layers without any constraint on convolution
weights, which may not be an apt choice for a depth regression problem such as SIDP. On the other
hand, the fusion via optimization strategy is based on a non-differentiable strategy, leading to a non-
end-to-end network loss function. Contrary to that, our method is well-constrained and performs
quite well with a loss function that helps end-to-end learning of our proposed network. Not long
ago, Lee & Kim (2019) proposed to estimate relative depths between pairs of images and ordinary
depths at a different scale. By exploiting the rank-1 property of the pairwise comparison matrix,
it recovers the relative depth map. Later, relative and ordinary depths are decomposed and fused
to recover the depth. On a slightly different note, Lee & Kim (2020) studies the effectiveness of
various losses and how to combine them for better monocular depth prediction.

To sum up, our approach allows learning of confidence weight to select reliable gradient estima-
tion in a fully differentiable manner. Further, it proffers the benefits of the variational approach to
overcome the limitations of the existing state-of-the-art methods. More importantly, the proposed
method can provide excellent depth prediction without making extra assumptions such as good depth
initialization, piece-wise planar scene, and assumptions used by previous works mentioned above.
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Figure 2: Illustration of the idea. (a) Depth gradient constraint along x axis at location (i, j) in 4× 4 matrix
form. (b) Construction of the overall matrix formulation with constraints at all the pixel locations.

3 METHOD

In this section, we first describe our proposed variational constraint and then present the overall
network architecture leading to the overall loss function.

3.1 VARIATIONAL CONSTRAINT

Here we introduce our variational constraint and how it can be useful for depth estimation. Consider
an unscaled depth map as Zu ∈ RH×W , with (H,W ) symbolizing the height and width, respec-
tively. Assuming Γx ∈ RH×W and Γy ∈ RH×W as the gradient of Zu in the x and y axis, we
write

∇Zu = [Γx, Γy]
T. (1)

Here, x and y subscript corresponds to the direction from left to right (x-axis) and top to bottom of
the image (y-axis), respectively. Elaborating on this, we can write

Γi,j
x = ∇xZ

i,j
u = Zi,j+1

u − Zi,j
u ; Γi,j

y = ∇yZ
i,j
u = Zi+1,j

u − Zi,j
u . (2)

Suppose we augment Eq.(2) expression for all (i, j), i ∈ {1, ...,H} and j ∈ {1, ...,W}. In that
case, we will end up with an over-determined system with 2HW equations in total. Given the
predicted Γx and Γy , we aim to recover the HW unknown variables in Zu. However, some of the
equations could be spurious and deteriorate the overall depth estimation result rather than improving
it. As a result, we must be mindful about selecting the equation that respects the imposed first-order
constraint and maintains the depth gradient to have a meaningful fitting for better generalization. To
that end, we introduce confidence weight Σx ∈ [0, 1]H×W , Σy ∈ [0, 1]H×W for gradient along x, y
direction. Consequently, we multiply the above two equations by the confidence weight term Σi,j

x
and Σi,j

y , respectively. On one hand, if the confidence is close to 1, the equation will have priority
to be satisfied by the optimal Zu. On the other hand, if the confidence is close to 0, we must ignore
the equation. For better understanding, we illustrate the first-order difference and weighted matrix
construction in Fig.2 (a) and Fig.2 (b).

Next, we reshape the Σx, Σy , Γx, Γy , and Zu into column vectors Σ̃x ∈ [0, 1]HW×1, Σ̃y ∈
[0, 1]HW×1, Γ̃x ∈ RHW×1, Γ̃y ∈ RHW×1, and Z̃u ∈ RHW×1, respectively. Organizing
Σ̃ = diag([Σ̃x; Σ̃y]) ∈ R2HW×2HW and Γ̃ = concat[Γ̃x; Γ̃y] ∈ R2HW×1, we can write the
overall expression in a compact matrix form using simple algebra as follows

Σ̃PZ̃u = Σ̃Γ̃ (3)

where P ∈ {1, 0,−1}2HW×HW is the first-order difference operator. Specifically, P is a sparse
matrix with only a few elements as 1 or -1. The ith row of P provides the first-order difference
operator for the ith equation. The position of 1 and -1 indicates which pair of neighbors to be
considered for the constraint. Fig.2 (b) provides a visual intuition about this matrix equation.

Eq.(3) can be utilized to recover Zu from the predicted Γx, Γy , Σx, and Σy . As alluded to above,
we have more equations than unknowns, hence, we resort to recovering the optimal depth map
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Figure 3: Overview of our framework. Given an input image, first an encoder is employed to extract features.
Then we predict the depth map by the V-layer. Next, we gradually upsample and refine the depth map. In the
end, we recover the metric depth by the metric layer.

Z̃∗
u ∈ RHW×1 by minimizing the following equation:

Z̃∗
u = argmin

Z̃u

||Σ̃(PZ̃u − Γ̃)||2. (4)

Refer Appendix for the full derivation. The closed-form solution can be written as follows:

Z̃∗
u =

KΣ̃︷ ︸︸ ︷
(PT Σ̃2P )−1PT Σ̃2 Γ̃. (5)

Denote KΣ̃ ≜ (PT Σ̃2P )−1PT Σ̃2 in Eq.(5), we write overall equation as Z̃∗
u = KΣ̃Γ̃. Next, we

describe the overall network architecture.

3.2 OVERALL NETWORK ARCHITECTURE

Our overall network architecture is composed of four main modules as follows.

(a) Encoder. Given an input image, the encoder computes the hierarchical feature maps through a
series of stages. To be precise, our encoder has four stages. Each stage contains transformer blocks
(Liu et al., 2021b). At the end of each stage, we collect the final feature map as the output of the
encoder resulting in the encoded feature maps with strides 4, 8, 16, and 32, respectively. Our encoder
module is inspired by Liu et al. (2021b), a recent state-of-the-art transformer network design. We
use it as our backbone by removing the final global pooling layer and fully connected layer.

(b) Variational Layer (V-Layer). The goal of this layer is to compute a map from encoded feature
maps to unscaled depth map, which adheres to the first-order variational constraint. As of V-layer,
we feed the feature maps of strides 16 and 32 as input which is the output of the encoder. Since
these features are at different resolutions, we upsample the feature map of stride 32 to stride 16 via
bi-linear interpolation and concatenate to construct IΦ ∈ RC×H×W , where (H,W,C) symbolizing
the height, width, and the number of channels, respectively. Note that H,W is not the same as the
original resolution of the ground-truth depth and images. We use of two convolutional layers on IΦ
to predict the depth gradient and corresponding weight for each pixel as follows:

{Γx,Γy,Σx,Σy} = f(IΦ; θ) (6)

where, f(IΦ; θ) denotes the convolutional layers with parameters θ. The predicted depth gradients
Γx and Γy are observed to be more accurate at smooth surface than at boundaries. This brings
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us again to the point made above that we must take care of which first-order constraint must be
included and discarded during regression. Using the Eq.(6) prediction, we construct the variational
constraint Eq.(3), and obtain the unscaled depth map following Eq.(5). The resulting depth map has
a resolution of 1/16 to the original image, which is later upsampled to the appropriate resolution.

To capture more scene features, we generate multiple channels (denoted as S) of {Γx,Γy,Σx,Σy}
using Eq.(6). As a result, we have a group of depth maps stacked along the channel dimension.
For a feature map with spatial resolution H ×W , our V-layer has a complexity of O(H3W 3). To
overcome complexity issue, we perform V-layer operation on feature maps with stride 16 and then
upsample and refine the depth maps in the later stage. The V-layer pipeline is shown in Fig.3(b).

(c) Upsample and Refine. This module upsamples and refines the input depth map via encoded
features at a given depth map resolution. To this end, we perform refinement at three different reso-
lutions in a hierarchical manner. Given the V-layer depth map at 1/16 resolution, we first refine the
depth via encoded features at this resolution. Concretely, this refinement is done using the following
set of operations. (1) concatenate the feature map and the depth map; (2) use one convolutional layer
with ReLU activation to fuse the feature and depth information; and (3) predict refined feature and
depth map via a convolutional layer. Later, the refined feature and depth map are upsampled and fed
into 1/8 for later refinement using the same above set of operations. Finally, the exact is done at 1/4
resolution. Note that these steps are performed in a sequel. At the end of this module, we have a
depth map of 1/4 of the actual resolution. The upsample and refine procedure are shown in Fig.3(c).

(d) Metric Layer. We must infer the global scene scale and shift to recover the metric depth. For
this, we perform global max pooling on the encoded feature map of stride 32. The resulting vector
is fed into a stack of fully connected layers to regress the two scalars, i.e., one representing the
scale and while other representing the shift. Using the feature map of stride 32 is motivated by the
observation that we have a much richer global scene context using it than at higher depth resolution.
It also provides a good compromise between computational complexity and accuracy.

3.3 LOSS FUNCTION

Depth Loss. It estimates the scale-invariant difference between the ground-truth depth and predic-
tion at train time (Eigen et al., 2014). The difference is computed by upsampling the predicted depth
map to the same resolution as the ground truth via bi-linear interpolation. Denoting the predicted
and ground-truth depth as Ẑ ∈ Rm×n, Zgt ∈ Rm×n we compute the depth loss as follows

Ldepth(Ẑ, Zgt) =
1

N

∑
(i,j)

(ei,j)2 − α

N2
(
∑
i,j

ei,j)2, where, ei,j = log Ẑi,j − logZi,j
gt . (7)

Here, N is the number of positions with valid measurements and α ∈ [0, 1] is a hyper-parameter.
Note that the above loss is used for valid measurements only.

Variational Loss. We define this loss using the output of V-layer. Suppose the ground-truth depth
map to be Zgt ∈ Rm×n and the predicted depth map for S channels as Zu ∈ RS×H×W . Since
the depth resolution is not same at this layer, we downsample the ground truth. It is observed via
empirical study that low-resolution depth map in fact help capture the first-order variational loss
among distant neighbors. Accordingly, we downsample the Zgt instead of upsamping Zu. We
downsample Zgt denoted as Qgt ∈ RH×W by random pooling operation, i.e., we randomly select a
location where we have a valid measurement since ground-truth data may have pixels with no depth
values. The coordinates of selected location in Zgt 7→ Zu ∈ RS×H×W and the corresponding depth
value is put in Q̂ ∈ RS×H×W via bi-linear interpolation. We compute the variational loss as

Lvar(Q̂,Qgt) =
1

N ′

∑
(i,j)

|Conv(Q̂)i,j −∇Qi,j
gt | (8)

where N ′ is the number of positions having valid measurements, ∇ symbolises the first-order dif-
ference operator, and Conv refers to the convolutional layer. Here, we use the Conv layer to fuse S
depth maps into a single depth map and also to compute its horizontal and vertical gradient.

Total Loss. We define the total loss as the sum of the depth loss and the variational loss i.e.,
L = Ldepth + λLvar, where λ is the regularization parameter set to 0.1 for all our experiments.
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Table 1: Comparison with the state-of-the-art methods on the NYU test set (Silberman et al., 2012). Please
refer to Sec.4.1 for details.

Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑ δ2 ↑
GeoNet (Qi et al., 2018) ResNet-50 - 0.128 0.569 - 0.834 0.960
DORN (Fu et al., 2018) ResNet-101 - 0.115 0.509 - 0.828 0.965
VNL (Yin et al., 2019) ResNeXt-101 - 0.108 0.416 - 0.875 0.976
TransDepth (Yang et al., 2021) ViT-B - 0.106 0.365 - 0.900 0.983
ASN (Long et al., 2021) HRNet-48 - 0.101 0.377 - 0.890 0.982
BTS (Lee et al., 2019) DenseNet-161 11.533 0.110 0.392 0.142 0.885 0.978
DPT-Hybird (Ranftl et al., 2021) ViT-B - 0.110 0.357 - 0.904 0.988
AdaBins (Bhat et al., 2021) EffNet-B5+ViT-mini 10.570 0.103 0.364 0.131 0.903 0.983
ASTrans (Chang et al., 2021) ViT-B 10.429 0.103 0.374 0.132 0.902 0.985
NeWCRFs (Yuan et al., 2022) Swin-L 9.102 0.095 0.331 0.119 0.922 0.992
Ours Swin-L 8.198 0.086 0.304 0.108 0.937 0.992
% Improvement -9.93% -9.47% -8.16% -9.24% +1.63% +0.00%

Table 2: Comparison with the state-of-the-art methods on the the KITTI official test set (Geiger et al., 2012).
We only list the results from the published methods. Please refer to Sec.4.1 for details.

Method Backbone SILog↓ Abs Rel↓ Sq Rel↓ iRMS↓
DLE (Liu et al., 2021a) ResNet-34 11.81 9.09 2.22 12.49
DORN (Fu et al., 2018) ResNet-101 11.80 8.93 2.19 13.22
BTS (Lee et al., 2019) DenseNet-161 11.67 9.04 2.21 12.23
BANet (Aich et al., 2021) DenseNet-161 11.55 9.34 2.31 12.17
PWA (Lee et al., 2021) ResNeXt-101 11.45 9.05 2.30 12.32
ViP-DeepLab (Qiao et al., 2021) - 10.80 8.94 2.19 11.77
NeWCRFs (Yuan et al., 2022) Swin-L 10.39 8.37 1.83 11.03
Ours Swin-L 9.84 7.96 1.66 10.44
% Improvement -5.29% -4.90% -9.29% -5.35%

4 EXPERIMENTS AND RESULTS

Implementation Details We implemented our method in PyTorch 1.7.1 (Python 3.8) with CUDA
11.0. The software is evaluated on a computing machine with Quadro-RTX-6000 GPU.

Datasets. We performed experiments on three benchmark datasets namely NYU Depth V2 (Silber-
man et al., 2012), KITTI (Geiger et al., 2012), and SUN RGB-D (Song et al., 2015). (a) NYU Depth
V2 contains images with 480 × 640 resolution with depth values ranging from 0 to 10 meters. We
follow the train and test set split from Lee et al. (2019), which contains 24,231 train images and 654
test images. (b) KITTI contains images with 352× 1216 resolution where depth values range from
0 to 80 meters. The official split provides 42,949 train, 1,000 validation, and 500 test images. Eigen
et al. (2014) provides another train and test set split for this dataset which has 23,488 train and 697
test images. (c) SUN RGB-D We preprocess its images to 480×640 resolution for consistency. The
depth values range from 0 to 10 meters. We use the official test set (5050 images) for evaluation.

Training Details. We use (Liu et al., 2021b) network as our backbone, which is pre-trained on
ImageNet (Deng et al., 2009). We use the Adam optimizer (Kingma & Ba, 2014) without weight
decay. We decrease the learning rate from 3e−5 to 1e−5 by the cosine annealing scheduler. To avoid
over-fitting, we augment the images by horizontal flipping. For KITTI (Geiger et al., 2012), the
model is trained for 10 epochs for the official split and 20 epochs for the Eigen split (Eigen et al.,
2014). For NYU Depth V2 (Silberman et al., 2012), the model is trained for 20 epochs.

Evaluation Metrics. We report statistical results on popular evaluation metrics such as square root
of the Scale Invariant Logarithmic error (SILog), Relative Squared error (Sq Rel), Relative Absolute
Error (Abs Rel), Root Mean Squared error (RMS), and threshold accuracy. Mathematical definition
related to each one of them is provided in the Appendix.

4.1 COMPARISON TO STATE OF THE ART

Tab.(1), Tab.(2), Tab.(3), and Tab.(4) provide statistical comparison results with the competing meth-
ods on NYU Depth V2, KITTI official split, KITTI Eigen split, and SUN RGB-D, respectively. Our
proposed approach shows the best results for all the evaluation metrics. Particularly on the NYU test
set, we reduce the SILog error from the previous best result, 9.102 to 8.198, and increase δ1 from
0.922 to 0.937. More qualitative results including V-layer output are presented in the Appendix.
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Table 3: Comparison with the state-of-the-art methods on the KITTI Eigen test set (Eigen et al., 2014).
Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑ δ2 ↑
DORN (Fu et al., 2018) ResNet-101 - 0.072 0.273 0.120 0.932 0.984
VNL (Yin et al., 2019) ResNeXt-101 - 0.072 0.326 0.117 0.938 0.990
TransDepth (Yang et al., 2021) ViT-B 8.930 0.064 0.275 0.098 0.956 0.994
BTS (Lee et al., 2019) DenseNet-161 8.933 0.060 0.280 0.096 0.955 0.993
DPT-Hybird (Ranftl et al., 2021) ViT-B - 0.062 0.257 - 0.959 0.995
AdaBins (Bhat et al., 2021) EffNet-B5+ViT-mini 8.022 0.058 0.236 0.089 0.964 0.995
ASTrans (Chang et al., 2021) ViT-B 7.897 0.058 0.269 0.089 0.963 0.995
NeWCRFs (Yuan et al., 2022) Swin-L 6.986 0.052 0.213 0.079 0.974 0.997
Ours Swin-L 6.817 0.050 0.209 0.076 0.977 0.997
% Improvement -2.42% -3.85% -1.88% -3.80% +0.03% +0.00%

Table 4: Comparison with AdaBins and NeWCRFs on SUN RGB-D test set. All methods are trained on NYU
Depth V2 train set without fine-tuning on SUN RGB-D.

Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑ δ2 ↑
AdaBins(Bhat et al., 2021) EffNet-B5+ViT-mini 13.652 0.110 0.321 0.137 0.906 0.982
NeWCRFs (Yuan et al., 2022) Swin-L 13.695 0.105 0.322 0.138 0.920 0.980
Ours Swin-L 12.596 0.094 0.299 0.127 0.929 0.983
% Improvement -7.73% -10.48% -6.85% -7.30% +0.98% +0.10%

For the SUN RGB-D test set, all competing models, including ours, are trained on the NYU Depth
V2 training set (Silberman et al., 2012) without fine-tuning on the SUN RGB-D. In addition, we align
the predictions from all the models with the ground truth by a scale and shift following Ranftl et al.
(2020). Tab.(4) results show our method’s better generalization capability than other approaches.
Extensive visual results are provided in the Appendix and supplementary video.

4.2 ABLATION STUDY

All the ablation presented below is conducted on NYU Depth V2 test set (Silberman et al., 2012).

(i) Effect of V-Layer. To understand the benefit and outcome of our variational layer compared to
other popular alternative layers in deep neural networks for this problem, we performed this ablation
study. We replace our V-layer firstly with a convolutional layer and later with a self-attention layer.
Tab.(5) provides the depth prediction accuracy for this ablation. For each introduced layer in Tab.(5),
the first and second rows show the performance of the depth map predicted with (w) and without
(w/o) subsequent refinements (cf. Sec.3.2 (c)), respectively. For the self-attention layer, we follow
the ViT (Dosovitskiy et al., 2021) and set the patch size to be one as we use the feature map with
stride 16. We also adopt the learnable position embedding (PE) with 128 dimensions. We set the
number of heads to be 4 and the number of hidden units to be 512. As shown in Tab.(5), our V-layer
indeed helps improve the accuracy of depth prediction compared to other well-known layers. More
experiments on KITTI and SUN RBG-D are provided in the Appendix.

(ii) Performance with Different Network Backbone. We evaluate the effects of our V-layer with
different types of network backbones. For this ablation, we use Swin-Large (Liu et al., 2021b),
Swin-Small (Liu et al., 2021b), and ConvNeXt-Small (Liu et al., 2022). The SILog error is shown
in Fig. 4. The results show that our V-layer improves the transformer and the convolutional network
performance. An important observation is that our V-layer shows excellent improvements in depth
prediction accuracy on weaker network backbones.

(iii) Performance with Change in the Value of S. For this ablation, we change the value of S in
the V-layer and observe its effects (cf. Sec.3.2 (b)). By increasing S, we generate more channels
of Γ̃ and Σ̃ which in-effect increases V-layer parameters. In the subsequent step, we expand the

Table 5: Benefit of V-layer. We replace the proposed V-layer with a single convolutional layer and a self-
attention layer, and evaluate the accuracy of depth map predicted with and without subsequent refinements.

Layer Refine SILog ↓ Abs Rel ↓ RMS↓ RMS log ↓ δ1 ↑ δ2 ↑

Convolution w/o 8.830 0.090 0.325 0.114 0.927 0.990
w/ 8.688 0.089 0.317 0.113 0.928 0.991

Self-Attention + PE w/o 8.790 0.090 0.318 0.114 0.927 0.990
w/ 8.595 0.089 0.316 0.112 0.929 0.991

V-Layer w/o 8.422 0.087 0.308 0.110 0.936 0.990
w/ 8.198 0.086 0.304 0.108 0.937 0.992
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number of channels to 128 by a convolutional layer to use the subsequent layers as they are. The
results are shown in Tab.(6). For reference, we also present the result by replacing the V-layer with
a convolutional layer in the first row in Tab.(6). By increasing S, we reduce the SILog error, at the
price of the speed (FPS). Yet, no real benefit is observed with S more than 16.
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Figure 4: Evaluation on Swin-L, Swin-S,
ConvNeXt-S w/ and w/o the V-layer.

(iv) Effect of Confidence Weight Matrix & Difference Op-
erator in V-Layer. For this ablation, we study the network’s
depth prediction under four different settings. (a) without V-
layer and replace it with convolutional layer (b) without the
confidence weight matrix (c) with learnable difference operator
and (d) our full model. The depth prediction accuracy observed
under these settings is provided in Tab.(7). Clearly, our full
model has better accuracy. An important empirical observation,
we made during this test is when we keep P learnable V-layer
has more learnable parameters, the performance becomes worse
than with fixed difference operator.

Table 6: Analysis of the number of feature groups.
More groups reduce the SILog error.

SILog↓ Abs Rel↓ RMS↓ FPS ↑
w/o V-layer 8.688 0.089 0.317 9.343
1 8.456 0.088 0.310 8.175
16 8.198 0.086 0.304 7.032
128 8.172 0.085 0.309 3.320

Table 7: Analysis of the confidence weight matrix
Σ̃ and the difference operator P .

SILog↓ Abs Rel↓ RMS ↓
(a) w/o V-layer 8.688 0.089 0.317
(b) w/o Σ̃ 8.537 0.089 0.316
(c) learnable P 8.355 0.088 0.310
(d) full 8.198 0.086 0.304

4.3 NETWORK PROCESSING TIME & PARAMETERS

We compared our method’s inference time and the number of model parameters to the Ad-
aBins (Bhat et al., 2021) and the NeWCRFs (Yuan et al., 2022). The inference time is measured
on the NYU Depth V2 test set with batch size 1. We have removed the ensemble tricks in Ad-
aBins and NeWCRFs for an unbiased evaluation, resulting in a slight increase in SILog error as
compared to Tab.(1) statistics. As is shown in Tab.(8), our method is faster and better than Ad-
aBins and NeWCRFs using Swin-Small backbone. With the same backbone as the NeWCRFs, i.e.,
Swin-Large, we achieve much better depth prediction results. Hence, our method with Swin-Small
backbone provides a better balance between accuracy, speed and memory foot-print.

Table 8: Comparison of the inference time and parameters to AdaBins and NeWCRFs on NYU Depth V2. We
show our results using the Swin-Small and Swin-Large backbone.

AdaBins NeWCRFs Ours Ours
(Bhat et al., 2021) (Yuan et al., 2022) (Small) (Large)

SILog Error ↓ 10.651 9.171 9.069 8.198
Speed (FPS) ↑ 5.638 10.551 11.891 7.032
Param (M) ↓ 75 258 76 249

5 CONCLUSION

In conclusion, a simple and effective approach for inferring scene depth from a single image is in-
troduced. The proposed SIDP approach is shown to better exploit the rigid scene prior, which is
generally overlooked by the existing neural network-based methods. Our approach does not make
explicit assumptions about the scene other than the scene gradient regularity, which holds for typical
indoor or outdoor scenes. When tested on popular benchmark datasets, our method shows signifi-
cantly better results than the prior art, both qualitatively and quantitatively.
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A APPENDIX

A.1 TRAINING DETAILS

We implement our framework in PyTorch (Paszke et al., 2019). We adopt the Swin-Large (Liu
et al., 2021b) as our backbone to conduct ablation experiments and compare with the state of the
arts. And the backbone is pre-trained on ImageNet-22K (Deng et al., 2009) by image classification.
For training, we use the Adam optimizer (Kingma & Ba, 2014) without weight decay. We decrease
the learning rate from 3e−5 to 1e−5 by the cosine annealing scheduler. To avoid over-fitting, we
augment the images by horizontal flipping. For both train and test, we keep the resolution of images
to be 352× 1216 in KITTI (Geiger et al., 2012), and 480× 640 in both NYU Depth V2 (Silberman
et al., 2012) and SUN RGB-D (Song et al., 2015). In KITTI, the model is trained for 10 epochs for
the official split and 20 epochs for the Eigen split (Eigen et al., 2014). In NYU Depth V2, the model
is trained for 20 epochs. We set the batch size to be 4 and 8 respectively for ablation experiments
and comparison to the state of the arts.
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A.2 EVALUATION METRICS

Suppose the predicted and ground-truth depth to be Ẑ ∈ Rm×n and Zgt ∈ Rm×n, respectively, and
the number of valid pixels to be N . We follow the existing methods (Yuan et al., 2022) and utilize
the following measures for quantitative evaluation:

• square root of the Scale Invariant Logarithmic error (SILog): 1
N

∑
i,j(e

i,j)2 −
1

N2 (
∑

i,j e
i,j)2, where ei,j = log Ẑi,j − logZi,j

gt ;

• Relative Squared error (Sq Rel): 1
N

∑
i,j(Ẑ

i,j − Zi,j
gt )

2/Zi,j
gt ;

• Relative Absolute Error (Abs Rel): 1
N

∑
i,j |Ẑi,j − Zi,j

gt |/Z
i,j
gt ;

• Root Mean Squared error (RMS): 1
N

√∑
i,j(Ẑ

i,j − Zi,j
gt )

2;

• Root Mean Squared Logarithmic error (RMS log): 1
N

√∑
i,j(e

i,j)2;

• threshold accuracy (δk): percentage of Ẑi,j s.t. max( Ẑ
i,j

Zi,j
gt

,
Zi,j

gt

Ẑi,j
) < 1.25k.

A.3 DERIVATION OF THE VARIATIONAL CONSTRAINT

In this part, we introduce the derivation of the variational constraint in more detail. Firstly, we
present the detailed form of the difference operator P , the confidence weight matrix Σ̃, the difference
vector Γ̃ and the depth vector Z̃u, when the depth map Zu is at resolution 2× 2. Secondly we show
the derivation of the optimal solution Z̃∗

u.

Overall Matrix Form. Suppose the unscaled depth map to be Zu ∈ R2×2, the difference map to
be Γx ∈ R2×2 and Γy ∈ R2×2, and the corresponding confidence weight map to be Σx ∈ [0, 1]2×2

and Σy ∈ [0, 1]2×2. We first reorganize the elements in Γx, Γy , Σx, Σy to construct the difference
vector Γ̃ ∈ R8×1 and the confidence weight matrix Σ̃ ∈ R8×8:

Γ̃ =



Γ1,1
x

Γ1,2
x

Γ2,1
x

Γ2,2
x

Γ1,1
y

Γ1,2
y

Γ2,1
y

Γ2,2
y


, Σ̃ =



Σ1,1
x 0 0 0 0 0 0 0
0 Σ1,2

x 0 0 0 0 0 0
0 0 Σ2,1

x 0 0 0 0 0
0 0 0 Σ2,2

x 0 0 0 0
0 0 0 0 Σ1,1

y 0 0 0
0 0 0 0 0 Σ1,2

y 0 0
0 0 0 0 0 0 Σ2,1

y 0
0 0 0 0 0 0 0 Σ2,2

y


.

Next, we apply the difference operator P ∈ {1, 0,−1}8×4:

P =



−1 1 0 0
0 0 0 0
0 0 −1 1
0 0 0 1
−1 0 1 0
0 −1 0 1
0 0 0 0
0 0 0 1


on the depth vector Z̃u ∈ R4×1:

Z̃u =

 Z1,1
u

Z1,2
u

Z2,1
u

Z2,2
u

 .

Finally, we construct the following constraint equation:

Σ̃PZ̃u = Σ̃Γ̃. (9)
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In the above equation, each row represents a weighted constraint for the first-order difference along
the x-axis:

Σi,j
x (Zi,j+1

u − Zi,j
u ) = Σi,j

x Γi,j
x (10)

or along the y-axis:
Σi,j

y (Zi+1,j
u − Zi,j

u ) = Σi,j
y Γi,j

y (11)

where (Zi,j+1
u − Zi,j

u ) = Γi,j
x and (Zi+1,j

u − Zi,j
u ) = Γi,j

y are the variational constraints for the
first-order difference, while Σi,j

x and Σi,j
y are the confidence weights for the constraints.

Optimal Solution. Given Σ̃ and Γ̃, we search for the optimal depth vector Z̃∗
u by minimizing the

residual of Eq.(9):
Z̃∗
u = argmin

Z̃u

||Σ̃(PZ̃u − Γ̃)||2. (12)

Firstly, the objective function, ||Σ̃(PZ̃u − Γ̃)||2, is convex with respect to Z̃u. Because || · ||2 is a
convex function. A composition of || · ||2 and the affine function , Σ̃(PZ̃u − Γ̃), is still convex.

Secondly, the optimal solution of a convex function can be found at where the first derivative is zero.
Thereby we obtain the final solution Z̃∗

u = (PT Σ̃2P )−1PT Σ̃2Γ̃.

A.4 NETWORK STRUCTURE DETAILS

In this part, we introduce the detailed structure of our network. In general we set the kernel size of
convolutional layers to be 3 unless otherwise stated.

(a) Encoder. We adopt the Swin-Large (Liu et al., 2021b) as our backbone. The network first divides
the image into patches each of size 4× 4, and embeds each patch into a 96-dimensional vector. The
above procedure is implemented by a convolutional layer with kernel size 4 and stride 4. Then there
are 4 transformation stages to be applied to the embedded vector. The first, second, third and forth
stages include 2, 2, 18, 2 blocks, respectively. More specifically, each block will divide the feature
map into non-overlapped windows of size 12× 12 , and compute new features within each window
following the transformer (Vaswani et al., 2017). The feature channels in the 4 stages are 192, 384,
768 and 1536, respectively, and the number of heads are 6, 12, 24, and 48, respectively. In the end
of each stage, there will be a downsampling operation to reduce the resolution of the feature map by
2. We collect the feature map before the downsampling operation as the output of the stage. In the
end, the strides of output feature maps are 4, 8, 16, and 32 respectively. And the channels are 192,
384, 768, and 1536, respectively.

(b) Upsampling 32->16. Given the feature maps of strides 32 and 16 from (a), we first upsample
the feature map of stride 32 to stride 16 via bi-linear interpolation. Then, we concatenate the feature
maps and obtain a new feature map of stride 16 and channels 1536 + 768 = 2304. We apply a
convolutional layer that has 2304 input channels, 2304 output channels, and 4 groups, to fuse the in-
formation. We also append an instance normalization layer (Ulyanov et al., 2016) and a LeakyReLU
activation function. Next, we apply another convolutional layer with 2304 input channels, 512 out-
put channels to compress the feature channels. Again we append an instance normalization layer
and the LeakyReLU activation function. In the end, we add a skip connection between the result
feature map and the previous concatenated feature map by addition operation. The concatenated
feature map will be transformed to consistent number of channels in advance by a convolutional
layer with 2304 input channels and 512 output channels. The final feature map has stride 16 and
512 channels.

(c) V-Layer. The V-layer takes the output feature map from (b) as input. We first utilize a convo-
lutional layer with 512 input channels and 512 output channels to transform the feature map into
a more appropriate hidden space. The feature is transformed by the LeakyReLU activation func-
tion. Then we utilize another convolutional layer with 512 input channels and 2 × 16 = 32 output
channels to predict the gradients along the horizontal and vertical axis, respectively. The number 16
represents that we predict 16 channels of horizontal gradients and 16 channels of vertical gradients
respectively, where each channel is expected to capture different information in scenes. Similarly,
we also use another convolutional layer with 512 input channels, 2 × 16 = 32 output channels to
predict the corresponding confidence weight maps. The confidence weight will be transformed by
the Sigmoid function. Then we reshape the predictions and compute the unscaled depth map for
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each pair of gradient and confidence weight following Eq.(5). The unscaled depth maps computed
from all the pairs will be concatenated along the channel. Thereby we obtain a depth map with 16
channels and stride 16. We apply a group normalization on the depth map, where the 16 channels
are viewed as a single group. In the end, we expand the channels of the depth map into 128 by a
convolutional layer. Thereby the output of the V-layer is a depth map with 128 channels and stride
16.

(d) Refine 16. We refine the feature map from (b) and the depth map from (c). Specifically, we first
concatenate the feature map with depth map, and obtain a new feature map with 512 + 128 = 640
channels. Then we employ a convolutional layer with 640 input channels and 640 output channels
to fuse the information. The result feature map will be further transformed by the LeakyReLU
activation function. Next a convolutional layer with 640 input channels and 128 output channels is
applied to predict the refined depth map. Similarly, we also predict the refined feature map by a
convolutional layer with 640 input channels and 512 output channels.

(e) Upsampling 16->8. Here, we upsample the feature map from (d) to stride 8 via bi-linear in-
terpolation. To recover the information of scenes, we concatenate with the feature map from the
encoder that has the same stride. In such a way, we obtain a new feature map with 384+512 = 896
channels and stride 8. Similar to (b), we apply a convolutional layer with 896 input channels, 896
output channels, and 4 groups to fuse the information. Then the feature map is transformed by
the instance normalization layer and the LeakyReLU activation function. Next, we apply another
convolutional layer with 896 input channels and 256 output channels to compress feature channels.
Again, we apply the instance normalization layer and LeakyReLU activation function. Same as (b),
we add a skip connection between the result feature map and the previous concatenated feature map
by addition operation. The concatenated feature map will be transformed to the consistent number
of channels by a convolutional layer with 896 input channels and 256 output channels. Thereby the
final feature map has stride 8 and 256 channels.

(f) Refine 8. We refine the depth map from (d) and the feature map from (e). The procedure is
the same as (d), except for the number of channels in convolutional layers are adapted accordingly.
Thereby we introduce the pipeline briefly. We first upsample the depth map from (d) into stride 8
to concatenate with the feature map. Thereby we obtain a new feature map with 256 + 128 = 384
channels. Then, we apply a convolutional layer with 384 input channels and 384 output channels
to fuse the information. The feature map is then transformed by LeakyReLU activation function.
Next, we utilize a convolutional layer with 384 input channels and 128 output channels to predict the
refined depth map. Similarly, another convolutional layer with 384 input channels and 256 output
channels is applied to predict the refined feature map.

(g) Upsampling 8->4. We upsample the feature map from (f) to stride 4. The procedure is the same
as (e) except for the number of channels. More specifically, we first upsample the feature map and
concatenate with the feature map from the encoder with consistent stride, obtaining a feature map
with 256 + 192 = 448 channels and stride 4. Then a convolutional layer with 448 input channels,
448 output channels, and 4 groups is applied to fuse the information. Then the result feature map
is transformed by the instance normalization and LeakyReLU activation function. Next, we apply
another convolutional layer with 448 input channels and 64 output channels to compress the feature
channels. Again, the instance normalization layer and LeakyReLU function is applied. In the end,
we add a skip connection between the final feature map and the previous concatenated feature map.

(h) Refine 4. We refine the depth map from (f) and the feature map from (g) following the same
pipeline as (d). We first upsample the depth map to stride 4, and concatenate with the feature
map, obtaining a new feature map with 64 + 128 = 192 channels and stride 4. Next, we apply a
convolutional layer with 192 input channels and 192 output channels to fuse the information, and
a LeakyReLU function to transform the feature map. In the end, we utilize another convolutional
layer with 192 input channels and 128 output channels to predict the new depth map. The output is
a depth map with 128 channels and stride 4.

(i) Metric Layer. We take the feature map with stride 32 from the encoder as input. We first apply
global max pooling to compress the feature map into a vector with 1536 channels. Then we apply a
fully-connected layer with 1536 input units and 384 output units to compress the channels. Next we
apply a LeakyReLU function. In the end, we utilize another fully-connected layer with 384 input
units and 2 output units to regress the scale and shift.
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Table 9: Comparison with Ramamonjisoa et al. (2020), Cheng et al. (2018) and Li et al. (2017) on NYU Depth
V2 test set (Silberman et al., 2012).

Method SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑ δ2 ↑
Ramamonjisoa et al. (2020) 8.655 0.088 0.320 0.113 0.929 0.991
Cheng et al. (2018) 8.640 0.089 0.317 0.112 0.930 0.991
Li et al. (2017) (end-to-end) 8.557 0.088 0.315 0.112 0.931 0.991
Li et al. (2017) (optimization) 8.574 0.089 0.316 0.112 0.930 0.991
Ours 8.198 0.086 0.304 0.108 0.937 0.992

Table 10: Impact of resolution. We evaluate the performance of V-layer when operating on feature maps of
stride 16 and 8, respectively.

Stride FPS↑ SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑ δ2 ↑
16 7.032 8.198 0.086 0.304 0.108 0.937 0.992
8 2.597 8.149 0.086 0.306 0.108 0.936 0.992

(j) Final Prediction. We take the output from (d),(f), (h) and (i) as input. We upsample all the depth
maps to stride 1 via bi-linear interpolation, and fuse the depth maps into a single depth map by the
addition operation and a convolutional layer with 128 input channels and 1 output channel. In the
end, we add the depth map with the shift and multiply with the scale from (i), respectively.

A.5 STATISTICAL EVALUATION WITH OTHER METHODS

In this section, we compare with Ramamonjisoa et al. (2020), Cheng et al. (2018), and Li et al. (2017)
on NYU Depth V2 (Silberman et al., 2012). More specifically, we apply their methods to refine the
final predicted depth map. The displacement field, the affinity matrix, and the depth gradient are
predicted from the refined feature map, which is the output of the last refinement module. For
Cheng et al. (2018) we adopt their default hyper-parameters. The kernel size is 3, and the number of
iterations is 24. Li et al. (2017) proposes the end-to-end fusion strategy and the optimization-based
fusion strategy. For the end-to-end fusion strategy, we employ three convolutional layers with kernel
size 5, and 16 channels. For the optimization-based fusion strategy, we use Adam optimizer. The
learning rate is 0.01 and the number of iterations is 100. The results are shown in Tab. (9). Our
method achieves better performance.

A.6 ABLATION ON RESOLUTION

In this part, we evaluate the performance of the V-layer when applying on the feature map with stride
8. We achieve this by dividing the feature map into 4 rectangle sub-regions with equal area (top left,
top right, bottom left and bottom right). We apply a V-layer on each sub-region. The predicted depth
maps from the sub-regions will be stacked to recover the original resolution. The results are shown
in Tab.(10). From stride 16 to 8, the improvement of accuracy is marginal. However, the inference
speed (FPS) is significantly slow down.

A.7 ABLATION ON KITTI AND SUN RGB-D

To further demonstrate the benefits of our V-layer on KITTI Eigen split (Geiger et al., 2012; Eigen
et al., 2014) and SUN RGB-D test set (Song et al., 2015), we present the accuracy of the predicted
depth map when replacing the V-layer with a single convolutional layer. As shown in Tab.(11), our
V-layer can improve the depth map accuracy on both KITTI and SUN RGB-D.

Table 11: Benefit of V-layer. We replace the proposed V-layer with a single convolutional layer, and evaluate
the predicted depth map accuracy.

Dataset Layer SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑ δ2 ↑

KITTI Convolution 6.996 0.052 0.217 0.079 0.975 0.997
V-Layer 6.817 0.050 0.209 0.076 0.977 0.997

SUN Convolution 13.172 0.098 0.309 0.132 0.924 0.981
V-Layer 12.596 0.094 0.299 0.127 0.929 0.983
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(a) Image (b) Confidence Weight (c) Difference Map (d) Depth Map

Figure 5: Visualization of V-layer Prediction. We visualize the confidence weight Σx, the differ-
ence map Γx and the depth map Zu from the V-layer when predicting on NYU Depth V2 test set.

Table 12: Comparison with AdaBins and NeWCRFs on NYU test set. All methods are trained on KITTI
Eigen train set without fine-tuning on NYU.

Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑ δ2 ↑
AdaBins(Bhat et al., 2021) EffNet-B5+ViT-mini 28.147 0.251 0.753 0.286 0.614 0.867
NeWCRFs (Yuan et al., 2022) Swin-L 21.138 0.173 0.551 0.213 0.755 0.934
Ours Swin-L 18.090 0.148 0.474 0.182 0.804 0.955

A.8 MORE GENERALIZATION EXPERIMENTS

We further evaluated the generalization performance when training on KITTI and test on NYU, or
training on NYU and test on KITTI. The results are shown in Tab.(12) and Tab.(13). Our method
achieves better generalization performance in both settings.

Table 13: Comparison with AdaBins and NeWCRFs on KITTI Eigen test set. All methods are trained on
NYU Depth V2 train set without fine-tuning on KITTI Eigen.

Method Backbone SILog ↓ Abs Rel ↓ RMS↓ RMS log↓ δ1 ↑ δ2 ↑
AdaBins(Bhat et al., 2021) EffNet-B5+ViT-mini 56.871 0.350 7.221 0.579 0.434 0.744
NeWCRFs (Yuan et al., 2022) Swin-L 54.460 0.268 6.246 0.550 0.512 0.833
Ours Swin-L 42.105 0.221 5.360 0.426 0.598 0.888

A.9 SPARSE GROUND-TRUTH DEPTH MAP

KITTI provides sparse LiDAR measurements as the ground truth (official ground truth has been
inpainted to an extent). Yet, our method could work well in such cases where sparse LiDAR mea-
surements are known. Our algorithm computes the depth map from the gradient predicted by the
network in a differentiable way. Thereby, for such a case, when we apply sparse supervision on the
computed depth map (note that the loss function is used for valid measurements only), the error sig-
nal from the loss function will be back-propagated to the predicted gradient to supervise the network
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(a) (b) (c)

(d) (e) (f)

Figure 6: Qualitative comparison on KITTI Eigen split (Eigen et al., 2014). For each column,
from top to bottom we present the input image, the prediction from AdaBins (Bhat et al., 2021),
NeWCRFs (Yuan et al., 2022), and our framework respectively.

to learn gradient clues. We demonstrated the effectiveness of our algorithm in Tab.(2) and Tab.(3)
for such cases.

A.10 MORE VISUALIZATION

We visualize the confidence weight map Σx, the difference map Γx, and the depth map Zu from the
V-layer in Fig.5. We observe that the depth value of a pixel shows correlation with respect to the
image coordinates of the pixel. For example, in the last example in Fig.5, for different pixels at the
door, the depth values are usually different but the first-order difference are approximately the same.
This observation shows that the difference map might be easier to predict than the depth map.

A.11 QUALITATIVE RESULTS

We provide more qualitative results on KITTI Eigen split (Eigen et al., 2014), SUN RGB-D (Song
et al., 2015), and NYU Depth V2 (Silberman et al., 2012) in Fig.6, Fig.7 and Fig.8, respectively.
Our framework predicts more accurate shapes and preserves the high-frequency scene information.
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(a) Image (b) AdaBins (c) NeWCRFs (d) Ours

Figure 7: Qualitative comparison with AdaBins (Bhat et al., 2021), NeWCRFs (Yuan et al., 2022)
on SUN RGB-D test set (Song et al., 2015). All the models are pre-trained on NYU Depth V2 (Sil-
berman et al., 2012) training set.
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(a) Image (b) AdaBins (c) NeWCRFs (d) Ours (e) Ground Truth

Figure 8: Qualitative comparison with AdaBins (Bhat et al., 2021), NeWCRFs (Yuan et al., 2022)
on NYU Depth V2 test set (Silberman et al., 2012). The ground-truth depth map are in-painted for
visualization.
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