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Abstract

In this supplementary material, we provide a detailed mathematical derivation to the optimization proposed in [5]. Addi-
tionally, we provide additional qualitative results, insights and briefly discussed some practical issues.

1. Detailed Mathematical Derivation
The cost function from Section 4.
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1.1. Background

To make the optimization simpler, let’s consider an error term that involves the tensor structure
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Now using the trace cyclic property and the orthonormality property of matrices.



K, Ks; K
1Bl % = trace(ls) — 2 cijtrace(Wy Wai) (W5 W) + Y > cucimtrace (V] Uam ) (¥, ).

=1 1=1 m=1

K. K. K. “)
|Egil|2 =d—2 Z i + Z Z CitCim Sy, where, 27, = trace(( WS? v (vl V).

j=1 I=1 m=1

Here, d stands for the dimension. Notice (2}, has a dimension of d x d which is easy to handle than the total number of points
in a dense datasets. Also, it’s simple to verify that {2}, is symmetric.

Using Equation (4) and Q¢ = (ij)in:1 € REsxKs we can rewrite Equation (2) as follows
| Esl|% = const — 2trace(CsQ) + trace(CsQCT)
= || Es||% = const — 2trace(CsLsLT) + trace((CsLs)(CsLs)T), where L, LT = Cholesky(Qs) 6))

= || Es||F = const + ||Ls — CsL||3-{". constant w.r.t C will not affect the minimization}

Similarly, other tensor structure can be equivalently represented in the temporal domain.

1.1.1 Overall Optimization
Substituting the above derivation in Equation (1) gives us a simpler representation
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The solution to S, can be derived by differentiating the above term w.r.t S5 and equating it to zero.
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Let’s define the soft-thresholding operation as S, [z] = sign(z) max(|z| — 7,0)



Then, the optimal solution to Sf is given by
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The solution to C's can be derived by differentiating the above term w.r.t Cs and equating it to zero.
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Solution to C;

Similar to the C, solution derivation, it’s solution can be derived as follows:
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Similar to Equation 9 derivation, using the soft-thresholding operation, its optimal solution can be obtained as
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1.2. Proof
We have stated in the Algorithm table that €25 > 0 The following lemma provides the proof for the same.
Lemma 1.1. Given a set of orthonormal matrices W :{{ Wsi}f{;l VO, e RIxn g Ty, — I}, if 3 ij =
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Figure 1: (a) Grouping of the trajectories based on Cs matrix. We provide four different views to check the fidelity of our result and
assumption. (b) Grouping of the shapes based on C; matrix. Color corresponding to the group block is shown with the color bars (extreme
right). This simulation is done on the real face sequence [4] with K and K; = 10.

Similarly, the positive semi-definite proof for € can be derived. Note: In case 25 = 0[|€2y = 0 while implementing
this algorithm, then add ¢ (a very small positive number) to the diagonal elements of €25 or €2; accordingly, to get to an
approximate Cholesky factorization. Mathematically, approximate Qs = 0]|2; = 0 as © ~ Q + I to make it numerically
positive definite.

2. Qualitative Results
2.1. Analysis of C,; and C,

In the experiment section we mentioned about the observation of C and C; matrix. Since, no ground-truth data’s are
available to quantify these matrices, we provide a visual observation for the same. We used the spectral clustering [10] to
group the trajectories and shapes after convergence to infer the output of Cs and C; matrix. Figure 1 shows the output of
this experiment. Visually it can be observed that local low-rank linear subspace are properly procured —both spatially and
temporally.

3. Rotation Estimate

We used the method proposed by Dai et al. [3] to estimate rotation which only depends on the K value (model complexity)
and therefore, it can efficiently handle dense feature correspondence over multiple frame to estimate rotation. Assuming that
a single non-rigid deforming object constitutes a global relative camera pose over frames is a reasonable choice and works
efficiently. Most of the past approaches also used this assumption to solve rotation [3, 2, 1, 6, 7]. Quantitative results on
several datasets also shows that high-quality reconstruction can be obtained under such assumption. Additionally, it has also
been observed that different camera path can lead to different reconstruction results. Consequently, we plan to investigate it
in our future work.

Note: For technical details on the compactness of grassmannians, kindly refer to [9] for comprehensive theory. Never-
theless, there are many other books and notes on differential manifolds which provides information on the compactness of
grassmannians.

4. Convergence Curve

Figure 2 shows the empirical convergence of our algorithm implementation. In practice, we find that our algorithm
converges in 100-150 iterations on almost all the datasets, we tested so far. The theoretical convergence proof is left as a
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Figure 2: Empirical convergence curve of our algorithm using ADMM.

future work.

5. Practical Challenges for dense NRSfM systems

From a practical view point, estimating robust dense feature correspondences of a deforming surface/object across frames
in itself is a very challenging problem to solve. Such challenges comes from the fact that illumination of the deforming object
keeps changing over time. As a result, color based weighting term to regularize neighboring terms (like depth continuity,
flow continuity, motion continuity etc.) in optical flow and 3D reconstruction algorithm’s [8] may lead to wrong solution.
Nonetheless, for our method we assume that a fairly good dense feature correspondences over images are provided as in-

put.

At last we would like to state that while developing dense NRSfM system using our or any other similar approaches

aforementioned challenges needs to be addressed first.
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