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Abstract

This paper addresses the task of dense non-rigid
structure-from-motion (NRSfM) using multiple images.
State-of-the-art methods to this problem are often hurdled
by scalability, expensive computations, and noisy measure-
ments. Further, recent methods to NRSfM usually either
assume a small number of sparse feature points or ignore
local non-linearities of shape deformations, and thus can-
not reliably model complex non-rigid deformations. To ad-
dress these issues, in this paper, we propose a new approach
for dense NRSfM by modeling the problem on a Grassmann
manifold. Specifically, we assume the complex non-rigid
deformations lie on a union of local linear subspaces both
spatially and temporally. This naturally allows for a com-
pact representation of the complex non-rigid deformation
over frames. We provide experimental results on several
synthetic and real benchmark datasets. The procured re-
sults clearly demonstrate that our method, apart from being
scalable and more accurate than state-of-the-art methods,
is also more robust to noise and generalizes to highly non-
linear deformations.

1. Introduction
Non-rigid structure-from-motion (NRSfM) is a classical

problem in computer vision, where the task is to recover
the 3D shape of a deforming object from multiple images.
Despite the fact that NRSfM for arbitrary deformation still
remains an open problem, it can be solved efficiently under
some mild prior assumptions about the deformation and the
shape configuration [14, 28, 23, 41, 4, 24, 25, 27, 26].

Even though the existing solutions to sparse NRSfM have
demonstrated outstanding results, they do not scale to dense
feature points and their resilience to noise remains unsatis-
factory. Moreover, the state-of-the-art algorithms [18, 11]
to solve dense NRSfM are computationally expensive and
rely on the assumption of global low-rank shape which,
unfortunately, fails to cater to the inherent local structure
of the deforming shape over time. Consequently, to rep-
resent dense non-rigid structure under such formulations
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Figure 1: Our algorithm takes dense long-term 2D trajectories of
a non-rigid deforming object as input, and provides a dense de-
tailed 3D reconstruction of it. The reconstructed surface captures
the complex non-linear motion which can be helpful for real world
applications such as 3D virtual and augmented reality. Example
frames are taken from publicly available real datasets: real face
sequence[18] and kinect paper sequence[37] respectively.

seem rather flimsy and implausible.
For many real-world applications, such as facial expres-

sion reconstruction, limitations such as scalability, timing,
robustness, reliable modeling, etc., are of crucial concern.
Despite these limitations, no template-free approach exists
that can reliably deal with these concerns. In this paper, we
propose a template-free dense NRSfM algorithm that over-
comes these difficulties. As a first step to overcome these
difficulties, we reduce the overall high-dimensional non-
linear space spanned by representing the deforming shape
as a union of several local low-dimensional linear sub-
spaces. Our approach is based on a simple idea/assumption
i.e., any complex deforming surface can be approximated
by a locally linear subspace structure [10]. We use this
simple intuition in a spatio-temporal framework to solve
dense NRSfM. This choice naturally leads to a few legiti-
mate queries:

a) Why spatio-temporal framework for solving dense
NRSfM? Spatio-temporal framework by Kumar et al. [23]
has exhibited the state-of-the-art results on the recent
NRSfM challenge [5, 21]. A recent method [3] which fol-



lows the same idea as proposed by Kumar et al. [23] has
also observed an improvement in the reconstruction accu-
racy under such formulations. Even though the concept
behind such a framework is elementary, no algorithm to
our knowledge exists that exploit such an intrinsic idea for
dense NRSfM.
b) Why the previously proposed spatio-temporal methods

are unable to handle dense NRSfM? The formulation pro-
posed by Kumar et al. [23] and its adaptation [3] is inspired
from SSC [16], and LRR [30]. As a result, the complex-
ity of their formulations grows exponentially in the order of
the number of data points. This makes it difficult to solve
dense NRSfM using their formulations. Moreover, these
methods [23, 41, 3] use an assumption that non-rigid shape
should lie on a low-dimensional linear or affine subspace
globally. In reality, such an assumption does not hold for
all kinds of non-linear deformations [39, 34]. Although a
recent spatio-temporal method proposed by Dai et al. [11]
solves this task, it involves a series of least square problems
to be solved, which is computationally demanding.

To overcome all these issues, we propose a spatio-
temporal dense NRSfM algorithm which is free from such
unwarranted assumptions and limitations. Instead, we ad-
here to the assumption that the low-dimensional linear sub-
space spanned by a deforming shape is locally valid. Such
an assumption about shapes has been well studied in topo-
logical manifold theory [1, 15]. The Grassmann manifold
is a topologically rich non-linear manifold, each point of
which represents the set of all right-invariant subspaces of
the Euclidean space. One property of the Grassmannian that
is particularly useful in our setting is that the points in it can
be embedded into the space of symmetric matrices. This
property has been used in several computer vision applica-
tions that deal with subspace representation of data [20, 8].
Accordingly, in our problem, to model a non-linear shape,
using a Grassmannian allows us to represent the shape as
a set of “smooth” low-dimensional surfaces embedded in a
higher dimensional Euclidean space. Such a representation
not only reduces the complexity of our task but also makes
our formulation robust and scalable as described below.
c) Why Grassmann manifold? It is well-known that the
complex non-rigid deformations are composed of multi-
ple subspaces that quite often fit a higher-order paramet-
ric model [33, 36, 41]. To handle such complex models
globally can be very challenging – both numerically and
computationally. Consequently, for an appropriate repre-
sentation of such a model, we decompose the overall non-
linearity of the shape by a set of locally linear models that
span a low-rank subspace of a vector space. As alluded to
above, the space of all d-dimensional linear subspaces of
RN (0 < d < N ) forms the Grassmann manifold [1, 2].
Modeling the deformation on this manifold allows us to op-
erate on the number of subspaces rather than on the number

of vectorial data points (on the shape), which reduces the
complexity of the problem significantly. Moreover, since
each local surface is a low-rank subspace, it can be faith-
fully reconstructed using a few eigenvalues and correspond-
ing eigenvectors, which makes such a representation scal-
able and robust to noise.

The aforementioned properties of the Grassmannian per-
fectly fit our strategy to model complex deformations, and
therefore, we blend the concept of spatio-temporal repre-
sentations with local low-rank linear models. This idea re-
sults in a two-stage coupled optimization problem i.e., lo-
cal reconstruction and global grouping, which is solved ef-
ficiently using the standard ADMM algorithm [7]. As the
local reconstructions are performed using a low-rank eigen
decomposition, our representation is computationally effi-
cient and robust to noise. We demonstrate the benefit of
our approach to benchmark real and synthetic sequences
§5. Our results show that our method outperforms previous
state-of-the-art approaches by 1-2 % on all the benchmark
datasets. Before we provide the details of our algorithm, we
review some pertinent previous works in the next section.

2. Background
This section provides a brief background on the recent

advancements in NRSfM, focusing mainly on the methods
that are relevant to this work.

Preliminaries: We borrow the notation system from
Dai et al.’s work [14] for its wide usage. Given ‘P ’ fea-
ture points over ‘F ’ frames, we represent W ∈ R2F×P ,
S ∈ R3F×P , R ∈ R2F×3F as the measurement, the shape,
and the rotation matrices, respectively. Here R matrix is
composed of block diagonal Ri ∈ R2×3, representing per
frame orthographic camera projection. Also, the notation
S] ∈ R3P×F stands for the rearranged shape matrix, which
is a linear mapping of S. We use ‖ . ‖F and ‖ . ‖∗ to denote
the Frobenius norm and the nuclear norm, respectively.

2.1. Relevant Previous Work
Dai et al.’s approach: Dai et al. proposed a simple and

elegant solution to NRSfM [14]. The work, dubbed “prior-
free”, provides a practical solution as well as new theoreti-
cal insights to NRSfM. Their formulation involves nuclear
norm minimization on S] instead of S –see Table 1(a). This
is enforced due to the fact that 3K rank bound on S is
weaker than K rank bound on S], where K refers to the
rank of S. Although this elegant framework provides ro-
bust results for the shapes that span a single subspace, it
may perform poorly on complex non-rigid motions [41].

Zhu et al.’s approach: To achieve better 3D reconstruc-
tions on complex non-rigid sequences, this work capitalized
on the limitations of Dai et al.’s work[14] by exploiting the
union of subspaces in the shape space [41]. The proposed
formulation is inspired by LRR [30] in conjunction with Dai



(a) Dai et al.’s [14]
minimize
S],E

‖S]‖∗ + λ‖E‖2F
subject to: W = RS + E

(b) Zhu et al.’s [41]
minimize
S],C,E

‖C‖∗ + γ‖S]‖∗ + λ‖E‖1
subject to: S] = S]C,W = RS + E

(c) Kumar et al.’s [23]
minimize
S,S],C1,C2

1
2‖W −RS‖

2
F + λ1‖C1‖1 + λ2‖S]‖∗ + λ3‖C2‖1

subject to: S = SC1, S
] = S]C2, 1

TC1 = 1T , 1TC2 = 1T ,
diag(C1) = 0, diag(C2) = 0, S] = g(S)

(d) Garg et al.’s[18]
minimize

S,R

λ
2 ‖W −RS‖

2
F +

∑
f,i,p ‖∇Sif (p)‖+ τ‖S]‖∗

subject to:
R ∈ SO(3)

Table 1: A brief summary of formulation used by some of the recent approaches to solve sparse and dense NRSfM which are closely
related to our method. Among all these four methods only Garg et al.’s [18] approach is formulated particularly for solving dense NRSfM.

et al. work –see Table 1(b). In the formulation, C ∈ RF×F ,
E ∈ R2F×P are the coefficient and error matrices.

Kumar et al.’s approach: Kumar et al. exploits mul-
tiple subspaces both in the trajectory space and in the
shape space [23]. This work demonstrated empirically that
procuring multiple subspaces in the trajectory and shape
spaces provide better reconstruction results. They proposed
a joint segmentation and reconstruction framework, where
segmentation inherently benefits reconstruction and vice-
versa –see Table 1(c). In their formulation C1 ∈ RP×P ,
C2 ∈ RF×F are the coefficient matrices and, g(.) linearly
maps S to S].

Dense NRSfM approach: Garg et al. developed a varia-
tional approach to solve dense NRSfM [18]. The optimiza-
tion framework proposed by them employs total variational
constraint on the deforming shape (∇Sif (p)) to allow edge
preserving discontinuities, and trace norm constraints to pe-
nalize the number of independent shapes –see Table 1(d).
Recently, Dai et al. has also proposed a dense NRSfM al-
gorithm with a spatio-temporal formulation [11].

2.2. Motivation

This work is intended to overcome the shortcomings of
the previous approaches to solve dense NRSfM. Accord-
ingly, we would like to outline the critical limitations asso-
ciated with them. Although some of them are highlighted
before, we reiterate it for the sake of completeness.
(a) To solve dense NRSfM using the formulation proposed

by Kumar et al. [23] and Zhu et al. [41] is nearly im-
possible due to the complexity of their formulation §1.
Also, the error measure used by them is composed of
Euclidean norm defined on the original data (see Ta-
ble 1), which is not proper for non-linear data with a
manifold structure [1, 38].

(b) The algorithm proposed by Garg et al. [18] results in
a biconvex formulation, which is computationally ex-
pensive and needs a GPU to speed up the implementa-
tion. Similarly, Dai et al.’s recent work[11] is compu-
tationally expensive as well due to costly gradient term
in their formulation.

(c) Methods such as [40, 29] rely on the template prior for
dense 3D reconstruction of the object. Other piecewise

approach for solving dense NRSfM [35] require a post-
processing step to stitch all the local reconstructions.

To avoid all the aforementioned limitations, we propose
a new dense NRSfM algorithm. The primary contributions
of this paper are as follows:

1. A scalable spatio-temporal framework on the Grass-
mann manifold to solve dense NRSfM which does not
need any template prior.

2. An effective framework that can handle non-linear de-
formations even with noisy trajectories and provides
state-of-the-art results on benchmark datasets.

3. An efficient solution to the proposed optimization
based on the ADMM procedure [7].

3. Problem Formulation
In this section, we first provide a brief introduction to the

Grassmann manifold and a suitable definition for a similar-
ity distance metric on it, before revealing our formulation.

3.1. Grassmann Manifold
The Grassmann manifold, usually denoted as G(n, r),

consists of all r-dimensional linear subspaces of Rn, where
n > r. A point on the Grassmann manifold is represented
by a n × r matrix (say X), whose columns are composed
of orthonormal basis of the subspace spanned by X , de-
noted as span(X) or in short as [X]. Let’s suppose [X1],
[X2] are two such points on this manifold, then among
several similarity distances known for this manifold [20],
we will be using the projection metric distance given by
dg([X1], [X2]) = 1√

2
‖X1X

T
1 −X2X

T
2 ‖F , as it allows di-

rectly embedding the Grassmannian points into a Euclidean
space (and the use of the Frobenius norm) using the map-
ping X → XXT . With this metric, (G, dg) forms a metric
space. Interested readers may refer to [20] for details.

3.2. Formulation
With the relevant background as reviewed in the above

sections, we are now ready to present our algorithm to
solve the dense NRSfM task under orthographic projection.
We start our discussion with the classical representation to
NRSfM i.e.,

Ws = RSs (1)
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Figure 2: Conceptual illustration of data point representation on the grassmann manifold. Each local subspace can equivalently be repre-
sented by a single point on the manifold. Top row: Construction of grassmann samples in the trajectory space using spatial information.
Bottom row: Construction of grassmann samples in the shape space by partitioning the shapes in a sequential order over frames.

where, Ws ∈ R2F×P , R = blkdiag(R1, ..., RF ) ∈
R2F×3F , Ss ∈ R3F×P . The motive here is, given the
input measurement matrix, solve for rotation (R) and 3D
shape (Ss). To serve this objective, Eq.(1) maintains the
camera motion and the shape deformation such that it com-
plies with the image measurements. For our method, we
solve for rotations using the Intersection method [14] by as-
suming that the multiple non-rigid motions within a single
deforming object, over frames, can be faithfully approxi-
mated by per frame single relative camera motion with a
higher rank1. Accordingly, our goal reduces to develop a
systematic approach that can reliably explain the non-rigid
shape deformations and provides better 3D reconstruction.
We use subscript ‘s’ in Eq.(1) to indicate that the column
permutations of Ss and Ws matrix are allowed. However,
the column permutations of S]t is inadmissible as it results
in discontinuous trajectories over frames.
Grassmannian Representations in Trajectory Space:
Let’s suppose Ψs = {Ψs1 ,Ψs2 , ..ΨsKs} is the set of points
on the Grassmann manifold generated using Ss matrix, then
Ts =

{
(Ψs1 )(Ψs1 )T , (Ψs2 )(Ψs2 )T ..., (ΨsKs

)(ΨsKs
)T
}

represents a tensor which is constructed by mapping all
symmetric matrices of the Grassmann data points —refer
Figure 2(a). As discussed before in §1, to explain the com-
plex deformations, we reduce the overall non-linear space
as a union of several local low-dimensional linear spaces
which form the sample points on the Grassmann mani-
fold. But, the notion of self-expressiveness is valid only
for Euclidean linear or affine subspace. To apply self-
expressiveness on the Grassmann manifold one has to adopt
linearity onto the manifold. Since, Grassmann manifold is
isometrically equivalent to the symmetric idempotent ma-
trices [9], we embed the Grassmann manifold into the sym-
metric matrix manifold, where the self-expression can be

1Check the supplementary material for a detail discussion on rotation.

defined in the embedding space. This leads to the following
optimization:

minimize
Es,Cs

‖Es‖2F + λ1‖Cs‖∗

subject to: Ts = TsCs + Es
(2)

We denote Cs ∈ RKs×Ks as the coefficient matrix with
‘Ks’ as the total number of spatial groups. Here, Es mea-
sures the trajectory group reconstruction error as per the
manifold geometry. Also, we would like to emphasize that
since the object undergoes deformations in the 3D space, we
operate in 3D space rather than in the projected 2D space.
‖ ‖∗ is enforced on Cs for a low-rank solution.

Grassmannian Representations in Shape Space: De-
forming object attains different state over time which ad-
heres to distinct temporal local subspaces [23]. Assuming
that the temporal deformation is smooth over-time, we ex-
press deforming shapes in terms of local self-expressiveness
across frames as:

minimize
Et,Ct

‖Et‖2F + λ2‖Ct‖∗

subject to:Tt = TtCt + Et
(3)

Similarly, Tt is the set of all symmetric matrices constructed
using a set of Grassmannian samples Ψt, where Ψt con-
tains the samples which are drawn from S]t ∈ R3P×F —
refer Figure 2(b). Intuitively, S]t is a shape matrix with each
column as a deforming shape. Et, Ct ∈ RKt×Kt represent
the temporal group reconstruction error and coefficient ma-
trix respectively, withKt as the number of temporal groups.
‖ ‖∗ is enforced on Ct for a low-rank solution.

Spatio-Temporal Formulation: Combining the above two
objectives and their constraints with reprojection error term
give us our formulation. Our representation blends the local
subspaces structure along with the global composition of a



non-rigid shape. Thus, the overall objective is:

minimize
Ss,S

]
t ,Es,Et,Cs,Ct

E =
1

2
‖Ws −RSs‖2F + γ‖S]t‖∗ + λ1‖Es‖2F

+ λ2‖Et‖2F + λ3‖Cs‖∗ + λ4‖Ct‖∗
subject to: Ts = TsCs + Es; Tt = TtCt + Et;

Ψs = ξ(Cs ,Ss , σε); Ψt = ξ(Ct ,S
]
t , σε);

Ss = ζ
(
Ψs,Σs, Vs, Ns);S

]
t = ζ

(
Ψt,Σ

]
t, Vt, Nt);

S]t = T1(Ss);Ws = T2(Ws, Ss);
(4)

The re-projection error constraint performs the 3D recon-
struction using Ws and R. Meanwhile, the local subspace
grouping naturally enforces the union of subspace struc-
ture in Ss, S

]
t with corresponding low-rank representations

of the coefficient matrices Cs and Ct. Here, the func-
tion ξ(.) draws inference from C matrices to refine Grass-
mannian sample set, both in trajectory and shape spaces.
The function ζ(.) reconstructs Ss and S]t matrices based
on a set of local subspaces (Ψs,Ψt, Vs, Vt), singular val-
ues (Σs, Σt) and the number of top eigenvalues (Ns, Nt).
The function T1(.) transforms Ss ∈ R3F×P matrix to
S]t ∈ R3P×F matrix and T2(.) function rearranges Ws

matrix as per the recent ordering of Ss2. Parameters such
as ‘σε’, ‘Ns’ and ‘Nt’ provides the flexibility to handle
noise and adjust computations. Note that the element of
the sets Ψs,Ψt, Vs and Vt are obtained using SVD. The
above equation i.e. Eq: (4) is a coupled optimization prob-
lem where the solution to S matrices influence the solution
of C matrices and vice-versa, and T1() connects S]t to Ss.

4. Solution
The formulation in Eq.(4) is a non-convex problem due

to the bilinear optimization variables (TsCs, TtCt), hence a
global optimal solution is hard to achieve. However, it can
be efficiently solved using Augmented Lagrangian Methods
(ALMs) [7], which has proven its effectiveness for many
non-convex problems. Introducing Lagrange multipliers
({Yi}3i=1) and auxiliary variables (Js, Jt) to Eq.(4) gives
us the complete cost function as follows:

minimize
Ss,S

]
t ,Cs,Ct,Js,Jt

E =
1

2
‖Ws −RSs‖2F +

β

2
‖S]t − T1(Ss)‖2F+

< Y1, S
]
t − T1(Ss) > +γ‖S]t‖∗ + λ1‖Ts − TsCs‖2F + λ3‖Js‖∗

+
β

2
‖Cs − Js‖2F+ < Y2, Cs − Js > +λ2‖Tt − TtCt‖2F+

λ4‖Jt‖∗ +
β

2
‖Ct − Jt‖2F+ < Y3, Ct − Jt >

subject to: Ψs = ξ(Cs ,Ss , σε); Ψt = ξ(Ct ,S
]
t , σε);

Ss = ζ(Ψs,Σs, Vs, Ns);S
]
t = ζ(Ψt,Σ

]
t, Vt, Nt);

Ws = T2(Ws, Ss);
(5)

2It’s important to keep track of column permutation of Ws, Ss.

The function ξ(.) first computes the SVD of C matrices, i.e.
C = [Uc,Σc, Vc], then forms a matrix A such that Aij =
[XXT ]σεij , where σε is set empirically based on noise levels
and X = Uc(Σc)

0.5 (normalized). Secondly, it uses Aij
to form new Grassmann samples from the S matrices[22].
Notice that ξ(.) operates on C matrices whose dimensions
depend on the number of Grassmann samples. This reduces
the complexity of the task from exponential in the number
of vectorial points to exponential in the number of linear
subspaces. The later being of the order 10-50, where as the
former can go more than 50,000 for dense NRSfM.

The ζ(.) function is defined as follows ζ ={
(Ψa,Σa, Va, r)|Sa = horzcat(Ψr

aΣraV
r
a ),∀1 ≤ a ≤

Card(Ψa), r ∈ Z+
}

, where r stands for top-r eigen-
values, Card(.) denotes the cardinal number of the set
and horzcat(.) denotes for the horizontal concatenation
of matrices. Intuitively, ζ(.) reconstructs back each local
low-rank subspace. During implementation, we use Ss, S

]
t

in place of Sa accordingly. The optimization variables over
iteration are obtained by solving for one variable at a time
treating others as constant, keeping the constraints intact.
For detailed derivations for each sub-problem and proofs,
kindly refer to the supplementary material. The pseudo
code of our implementation is provided in Algorithm 1.

5. Experiments and Results

We compare the performance of our method against four
previously reported state-of-the-art approaches, namely
Dense Spatio-Temporal DS [11], Dense Variational DV
[18], Trajectory Basis PTA [4] and Metric Projection MP
[32]. To test the performance, we used dense NRSfM
dataset introduced by Garg et al. [18] and Varol et al.
[37] under noisy and noise free conditions. For quantita-
tive evaluation of 3D reconstruction, we align the estimated
shape Stest with ground-truth shape StGT per frame using
Procrustes analysis. We compute the average RMS 3D re-
construction error as e3D = 1

F

∑F
t=1

‖Stest−S
t
GT ‖F

‖StGT ‖F
. We

used Kmeans++ algorithm [6] to initialize segments with-
out disturbing the temporal continuity.
Experiments on Synthetic Face Sequences: This dataset
consists of 4 different face sequence with 28,880 feature
points tracked over multiple frames. The face sequence 1,
2 is a 10 frame long video, whereas, face sequence 3, 4 is a
99 frame long video. It’s a challenging dataset mainly due
to different rotation frequencies and deformations in each
of the sequence. Figure 3 shows the qualitative reconstruc-
tion results obtained using our approach in comparison to
the ground-truth for face sequence 4. Table 2 lists the per-
formance comparisons of our method with other compet-
ing methods. Clearly, our algorithm outperforms the other
baseline approach, which helps us to conclude that holis-
tic approaches to rank minimization without drawing any



Algorithm 1 Scalable Dense Non-Rigid Structure from Motion: A Grassmannian Perspective

Require: Ws, R using [14], tuning parameters: λ1, λ2, λ3, λ4, γ, ρ = 1.1, β = 1e−3, βm = 1e6, ε = 1e−12, Ks, Kt.
Initialize: Ss = pseudoinverse(R)Ws and S]t = T1(Ss).
Initialize: ‘Kt’ temporal data points on the Grassmann manifold using ‘S]t ’ matrix, Ψt = {Ψti}Kt

i=1 .
Initialize: ‘Ks’ spatial data points on the Grassmann manifold using ‘Ss’ matrix, Ψs = {Ψsi}Ks

i=1 .
Initialize: The auxiliary variables Js, Jt and Lagrange multiplier {Yi}3i=1 as zero matrices.
Initialize: Ωsij = trace[

(
ΨT

sj Ψsi

)(
ΨT

si Ψsj

)
], Ωtij = trace[

(
ΨT

tj Ψti

)(
ΨT

ti Ψtj

)
], Ωs = (Ωsij)

Ks
i,j=1, Ωt = (Ωtij)

Kt
i,j=1

LsL
T
s = Cholesky(Ωs), LtLTt = Cholesky(Ωt)

1: while not converged do
2: Ss← (RTR+ βI)−1

(
β
(
T −11 (S]t ) +

T −1
1 (Y1)
β

)
+RTWs

)
3: Cs←

(
2λ1LsL

T
s + β(Js − Y2

β )
) (

2λ1LsL
T
s + βIs

)−1
4: Ψs← ξ(Cs, Ss, σε) // Update spatial Grassmann points
5: Ss← ζ(Ψs,Σs, Vs, Ns); // refine based on top Ns eigen value
6: Js← UJsSλ3

β
(ΣJs)VJs , where [UJs ,ΣJs , VJs ] = svd(Cs + Y2

β ) and Sτ [x] = sign(x)max(|x|-τ , 0)

7: S]t ← UtS γ
β

(Σt)Vt, where [Ut,Σt, Vt] = svd(T1(Ss)− Y1

β ) and Sτ [x] = sign(x)max(|x|-τ , 0)

8: Ct←
(

2λ2LtL
T
t + β(Jt − Y3

β )
) (

2λ2LtL
T
t + βIt

)−1
9: Ψt← ξ(Ct, S

]
t , σε) // Update temporal Grassmann points

10: S]t ← ζ(Ψt,Σt, Vt, Nt); // refine based on top Nt eigen value
11: Jt ← UJtSλ4

β
(ΣJt)VJt , where [UJt ,ΣJt , VJt ] = svd(Ct + Y3

β ) and Sτ [x] = sign(x)max(|x|-τ , 0)

12: Ωsij ← trace[
(
ΨT

sj Ψsi

)(
ΨT

si Ψsj

)
], Ωtij ← trace[

(
ΨT

tj Ψti

)(
ΨT

ti Ψtj

)
];

13: Ωs ← (Ωsij)
Ks
i,j=1, Ωt ← (Ωtij)

Kt
i,j=1; // . Ωs � 0,Ωt � 0, if Ωs||Ωt = 0 add δI to make it � 0 (see suppl. material)

14: LsL
T
s = Cholesky(Ωs), LtLTt = Cholesky(Ωt);

15: Ws← T2(Ws, Ss) // Note: Column permutation for Ws and Ss should be same.
16: Y1 := Y1 + β(S]t −T1(Ss)), Y2 := Y2 + β(Cs − Js), Y3 := Y3 + β(Ct − Jt); // Update Lagrange multipliers
17: β ← minimum(ρβ, βm)

18: maxgap := maximum([‖S]t −T1(Ss)‖∞, ‖Cs − Js‖∞, ‖Ct − Jt‖∞])
19: if (maxgap < ε ‖ β > βm) then
20: break;
21: end if // check for the convergence
22: end while // Note: δ is a very small positive number and I symbolizes identity matrix.
Ensure: Ss, St, Cs, Ct. // Note: Kindly use economical version of svd on a regular desktop.

Frame 1 Frame 18 Frame 25 Frame 32 Frame 50 Frame 60 Frame 68 Frame 99

Figure 3: Reconstruction results obtained on synthetic dense face dataset (face sequence 4). Top row : Ground-truth 3D points, Bottom
row : Recovered 3D points using our approach.



(a) (b) (c)

Figure 4: Qualitative reconstruction results procured on benchmark real dense dataset [18] a) Face sequence (28,332 feature points over
120 frames) b) Back sequence (20,561 feature points over 150 frames) c) Heart sequence (68,295 feature points over 80 frames).

Figure 5: Reconstruction results on benchmark kinect tshirt (74,000 points, 313 frames) and kinect paper(58,000 points, 193 frames)
dataset [37]. Top row: Input image frame. Bottom row: Dense 3D reconstruction for the corresponding frame using our approach.

inference from local subspace structure is a less effective
framework to cope up with the local non-linearities.

Data DS [11] DV [18] PTA [4] MP [32] Ours
Seq.1 0.0636 0.0531 0.1559 0.2572 0.0443
Seq.2 0.0569 0.0457 0.1503 0.0640 0.0381
Seq.3 0.0374 0.0346 0.1252 0.0611 0.0294
Seq.4 0.0428 0.0379 0.1348 0.0762 0.0309

Table 2: Average 3D reconstruction error (e3D) comparison on
dense synthetic face sequence[18]. Note: The code for DV [18] is
not publicly available, we tabulated its results from DS [11] work.

Experiments on face, back and heart sequence: This
dataset contains monocular videos of human facial expres-
sions, back deformations, and beating heart under natural
lighting conditions. The face sequence, back sequence, and
heart sequence are composed of 28332, 20561, and 68295
feature points tracked over 120, 150, and 80 images, respec-
tively. Unfortunately, due to the lack of ground-truth 3D
data, we are unable to quantify the performance of these se-
quences. Figure 4 shows some qualitative results obtained
using our algorithm on this real dataset.
Experiments on kinect paper and kinect tshirt se-
quence: To evaluate our performance on the real deforming
surfaces, we used kinect paper and kinect tshirt dataset[37].
This dataset provides sparse SIFT[31] feature tracks along
with dense 3D point clouds of the entire scene for each
frame. Since, dense 2D tracks are not directly available
with this dataset, we synthesized it. To obtain dense fea-

Data DS [11] DV [18] PTA [4] MP [32] Ours
paper 0.0612 - 0.0918 0.0827 0.0394
tshirt 0.0636 - 0.0712 0.0741 0.0362

Table 3: Average 3D reconstruction error (e3D) comparison on
kinect paper and kinect tshirt [37] sequence. Note: The code for
DV [18] is not publicly available. The pixels with no 3D data
available were discarded for the experiments and the evaluation.

ture tracks, we considered the region within a window con-
taining the deforming surface. Precisely, we considered the
region within xw = (253, 253, 508, 508), yw = (132, 363,
363, 132) across 193 frames for paper sequence, and xw =
(203, 203, 468, 468), yw = (112, 403, 403, 112) across 313
frames for tshirt sequence to obtain the measurement matrix
[19, 17]. Figure 5 show some qualitative results obtained
using our method on this dataset. Table 3 lists the numeri-
cal comparison of our approach with other competing dense
NRSfM approaches on this dataset.
Experiments on noisy data: To evaluate the robustness of
our method to noise levels, we performed experiments by
adding Gaussian noise under different standard deviations
to the measurement matrix. Similar to DS [11] the stan-
dard deviations are incorporated as σn = r max{|Ws|} by
varying r from 0.01 to 0.05. We repeated the experiment
10 times. Figure 6(a) and Figure 6(b) shows the variation in
the performance of our method under different noise ratio’s
on synthetic face sequences[18] and kinect sequences[37]
respectively. It can be inferred from the plot that even with
large noise ratios, the average reconstruction error does not
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Figure 6: (a)-(b) Avg. 3D reconstruction error (e3D) variation with the change in the noise ratio for synthetic face sequence and kinect
sequence respectively. (c)-(d) Variation in e3D with the number of top eigen value and number of grassmann data points for Face Seq3.
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Figure 7: (a)-(b) A typical structure of Cs ∈ RKs×Ks , Ct ∈ RKt×Kt after convergence. (c) Ablation test performance on the synthetic
face sequence [18]. (d) Runtime comparison of our method with MP [32] and a recent state-of-the-art dense NRSfM algorithm DS[11].

fluctuate significantly. This improvement is expected from
our framework as it is susceptible only to top eigen values.

Effects of variable initialization on the overall perfor-
mance: We performed several other experiments to study
the behavior of our algorithm under different variable ini-
tializations. For easy exposition, we conducted this exper-
iment on noise free sequences. We mainly investigated the
behavior of Ns, Nt,Ks,Kt on the overall performance of
our algorithm. Figure 6(c) and Figure 6(d) shows the vari-
ations in the reconstruction errors with respect to Ns and
Ks respectively. A similar trend in the plots is observed for
changes on Nt and Kt values. These plots clearly illustrate
the usefulness of our local low-rank structure i.e., consider-
ing a small number of eigenvalues for every local structure
is as good as considering all eigenvalues. Similarly, increas-
ing the number of local subspaces after a certain value has
negligible effect on the overall reconstruction error. Fur-
thermore, we examined the form of Cs and Ct after conver-
gence as shown Figure 7(a) and Figure 7(b). Unfortunately,
due to the lack of ground-truth data on local subspaces, we
could not quantify Cs and Ct. For qualitative analysis on
the observation, kindly refer to the supplementary material.

Ablation Analysis: This test is performed to evaluate
the importance of spatial and temporal constraints in our
formulation. To do this, we observe the performance of
our formulation under four different setups: a) without any
spatio-temporal constraint (NC), b) with only spatial con-
straint (SP), c) with only temporal constraint (TP), and d)
with spatio-temporal constraint (Both). Figure 7(c) shows
the variations in reconstruction errors under these setups on

four synthetic face sequence. The statistics clearly illustrate
the importance of both constraints in our formulation.

Runtime Analysis: This experiment is performed on a
computer with an Intel core i7 processor and 16GB RAM.
The script to compute the runtime is written in MATLAB
2016b. Figure 7(d) shows the runtime comparisons of our
approach with other dense NRSfM methods. The runtime
reported in Figure 7(d) corresponds to the results listed in
Table 2, 3. The results clearly show the scalability of our
method on datasets with more than 50,000 points. Despite
PTA [4] is faster than our approach, its accuracy suffers by
a large margin for dense NRSfM (see Table 2, 3).

6. Conclusion

In this paper, we have introduced a scalable dense
NRSfM algorithm which efficiently models the complex
non-linear deformations. We achieved this by exploiting
the non-linearity on the Grassmann manifold via a spatio-
temporal formulation. Moreover, we provided an efficient
ADMM [7] based solution for solving our optimization. In
the future, we will consider how to extend this work to the
projective setting with perspective cameras (e.g. [13, 12]).
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