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Dense Non-Rigid Structure from Motion: A
Manifold Viewpoint

Suryansh Kumar, Luc Van Gool, Carlos E. P. de Oliveira, Anoop Cherian, Yuchao Dai, Hongdong Li

Abstract—Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature
correspondences across multiple frames. Classical approaches to this problem assume a small number of feature points and, ignore
the local non-linearities of the shape deformation, and therefore, struggles to reliably model non-linear deformations. Furthermore,
available dense NRSfM algorithms are often hurdled by scalability, computations, noisy measurements and, restricted to model just
global deformation. In this paper, we propose algorithms that can overcome these limitations with the previous methods and, at the same
time, can recover a reliable dense 3D structure of a non-rigid object with higher accuracy. Assuming that a deforming shape is composed
of a union of local linear subspace and, span a global low-rank space over multiple frames enables us to efficiently model complex non-
rigid deformations. To that end, each local linear subspace is represented using Grassmannians and, the global 3D shape across
multiple frames is represented using a low-rank representation. We show that our approach significantly improves accuracy, scalability,
and robustness against noise. Also, our representation naturally allows for simultaneous reconstruction and clustering framework which
in general is observed to be more suitable for NRSfM problems. Our method currently achieves leading performance on the standard
benchmark datasets.

Index Terms—Non-Rigid Structure from Motion, Linear Subspace, Low-Rank, Grassmann Manifold.
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1 INTRODUCTION

I N this work, we will be focused on the problem of Dense Non-
rigid Structure from Motion (NRSfM). Generally, the goal of

this problem is to solve dense 3D shape of a non-rigidly deforming
object in the scene from its per pixel image correspondences across
multiple frames. Application that benefits from dense NRSfM
includes animation [1], motion capture [2], 3D facial expression
capture [3], human heart 3D model for bypass surgery [3] and
many more. These examples demonstrate that NRSfM is central
to a wide range of important real-world applications and therefore,
a reliable solution to NRSfM can benefit several areas in science
and engineering.

There are different ways to solve non-rigid structure-from-
motion problem, among them, matrix factorization is one of
the most popular and a well-known approach to find a solution
to this problem [4] [2] [5] [6]. Under the matrix factorization
approach, a measurement matrix (a matrix with 2D trajectories
as its column vectors) is decomposed into a motion matrix and
a shape matrix §4.1. Consequently, any solution to this problem
using this approach depends on the proper modeling of structure,
and an efficient approach to estimate motion. Mathematically, one
can assume that the 3D shape belongs to some shape manifold1

and the motion lies on a differentiable manifold [7]. Keeping this
perspective to solve dense NRSfM, it’s quite natural to think of
this problem in terms of manifolds, and how to model this problem
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1. Here, we assume a smooth, continuous surface for dense NRSfM problem

efficiently using manifold representation.
Our survey reveals that the advancements in the non-rigid

structure-from-motion for sparse set of points has been steady
over the years [2] [6] [8] [9] [10] [5] [11] [12] [13] [14] [15], yet,
the developments in dense NRSfM algorithm has been limited
[3] [16] [17]. The reason for such a limited development in
dense NRSfM is perhaps due to its dependence on per pixel
reliable 2D image correspondences, across multiple frames, or
the absence of resilient mathematical representation to model
dense surface deformation. One can argue on the efficient motion
estimation, however, from image correspondences, we can only
estimate relative motion, and reliable algorithms with convincing
theory exists to perform this task well [5] [11]. Additionally, with
the recent developments in learning based approaches, per pixel
correspondences can be achieved with a remarkable accuracy [18]
[19], which leaves dense non-rigid shape representation and its
modeling as a potential gray area for research in dense NRSfM.

A natural way to deal with dense NRSfM is to try classical
sparse NRSfM algorithms, which in fact, works quite well for a
few sets of points. Our experiments show that the existing sparse
NRSfM algorithms do not cascade well to dense NRSfM settings.
This is because the assumption and the formulation developed for
the sparse NRSfM does not hold entirely for dense deforming
surfaces. For example: The assumption that a non-rigid shape
spans a global low-rank space [5] [11]. Now, such an assumption
may hold for the global structure of the problem, however, it fails
to cater the inherent local deformation of the shape over time
and space. Therefore, dense NRSfM solution using sparse NRSfM
formulations provides implausible results. This drawback with [5]
[11] led to the development of union of subspace based methods in
NRSfM [20] [13] [21]. Among these methods, Kumar et.al. work
on the union of subspace demonstrated state-of-the-art results [13]
in the NRSfM challenge at CVPR 2017 [22]. Nevertheless, these
algorithms do not scale to dense feature points and their resilience
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to noise and outliers remains unsatisfactory.
In the past, researchers have developed dense NRSfM

algorithm as well, but similar to sparse NRSfM they are mostly
restricted to global shape constraint [23] [3] [17]. As a result, it
fails to exploit the local deformation of the surface. Moreover,
the optimization framework proposed by these approaches is
critically expensive to process §2. These deficiencies with past
methods made us realize that a dense NRSfM algorithm needs a
framework that should be able to exploit both local and global
non-linearities, and at the same time must be computationally fast
to process. Keeping these standards intact, we developed a new
representation and modeling for dense NRSfM problem. Using
our new representation, we can apply both local and global shape
deformation constraints to model a dense NRSfM problem. We
adhere to the assumption that the low-dimensional linear subspace
spanned by a deforming shape is valid locally —in both space
and time, along with global low-rank space. Such an assumption
about the surfaces has been well studied in topological manifold
theory [24] [25].

Global low rank representation: Matrix factorization approaches
to NRSfM assumes that the deforming 3D structure intrinsically
spans a low-rank space globally [5] [3]. This low-rank repre-
sentation faithfully captures the global behavior of a non-rigidly
deforming object over multiple frames. This representation can
be obtained using Singular Value Decomposition, however, in
the presence of noisy measurements such a solution can provide
unsettling results. Due to [26] [27] [28] its possible to recover a
low-rank solution under such circumstances. Dai et.al. research
[5] —which is a classical work in NRSfM, draws its inspiration
using the following optimization to solve for low-rank non-rigid
3D structure

argmin
X,E

‖X‖∗+‖E‖l

subject to: Y= X+E
(1)

Here ‘Y’, ‘X’ are the data matrix and its clean low-rank matrix
representation respectively, ‘E’ is the error matrix and l stands for
matrix norm (l = 1 or 2). Inspired by Dai et.al. [5] sparse NRSfM
work, in this paper, we assume that a dense non-rigid structure
is of intrinsically low rank globally. We use this assumption to
capture the global deformation of the surface.

Local linear subspace representation: In contrast to the previous
dense NRSfM methods [3] [17] [16], we represent deforming
surfaces as a union of locally linear subspace. We argue that most
non-rigidly deforming object over time and space is composed
of a union of linear subspaces. Therefore, the methods that uses
only global nuclear norm to constrain the surface deformation gets
a solution on the convex envelop over the underlying multiple
subspaces [3] [17] [16]. More precisely, these methods look for a
solution on the boundaries of a feasible region which is composed
of summation of subspaces. As a result, their 3D reconstruction
results are empirically inferior. In this work, we aim to jointly re-
cover an implicit local subspace representation of the surface along
with its 3D reconstruction for multiple frames. Consequently, we
decompose the surface into a set of locally linear subspaces and
represent each subspace as a point on a Grassmann Manifold [29]
(see Fig.1). We will show, such a representation is well-suited
for many dense deforming surfaces. Our approximation holds
well to capture the local non-linearities in addition to the global
deformation.

Spatial Linear Subspace

Temporal Linear Subspace

(a)

(b)

Spatial Linear Subspace

Fig. 1: Illustration show the decomposition of deforming surface into
a set of local linear subspace. (a) Local Linear subspace representation
of the trajectory space in the spatial domain (b) Local Linear Subspace
representation of the shape space in the temporal domain. Each local
plane shown in the temporal space can also be represented as a point
on the Grassmann manifold. The above result show the reconstruction
results using our method which is composed of 73,765 point samples
from Actor dataset [30].

Our representation to assign each local linear subspace as
a point on a Grassmann manifold not only provides a richer
representation to exploit each local linear subspace, but also helps
to improve the scalability, robustness, and processing time of
our dense NRSfM algorithm. To bootstrap the initial Grassmann
points, we group the local trajectories and shapes via k-means++
[31]. We compute a large but finite set of linear subspaces and,
cast dense NRSfM problem as a joint clustering of subspaces and
3D reconstruction tasks. Our representation easily blends into a
joint clustering and reconstruction formulation which provides
superior results than performing the two tasks separately [20] [13].

Contributions: The main contributions of our work are as follows:
• A new representation for dense NRSfM problem that utilizes

both local and global structure of the deforming shape to
solve the problem.

• An efficient framework for modeling non-rigidly deforming
surface on Grassmann manifold, which jointly supply 3D
reconstruction and compact subspace representation of the
shape.

• A scalable, robust and fast algorithm which does not need
any template prior to solve dense NRSfM [32] [33].

• A geometry aware extension that help exploit the Grass-
mannian representation of different dimensions which is
extremely useful in handling noise and high-dimensional
Grassmannians.

• Iterative solution to the proposed optimization based on
ADMM [34] that achieves leading performance on the stan-
dard benchmark dataset [3] [35].

In addition to the 3D reconstruction accuracy analysis, we per-
formed other relevant experiments and demonstrate the advantage
of our formulation using a range of qualitative and quantitative
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analysis. The present journal paper is based on two CVPR confer-
ence papers [36] [37]. In this work, we described the approach
in greater detail including the representation, modeling of the
problem and the implementation of the algorithm. Additionally,
how the first proposed algorithm [36] led the foundation for
the development of the next algorithm [37]. We also present a
more detailed derivation of the proposed optimization with deeper
statistical analysis, minor corrections and extensive experimental
results. Lastly, we provide a concise discussion on the potential
limitations of the algorithm, and how it can be improved further
for real-world applications. We believe our journal version is much
more complete, and provide the readers comprehensive details
on the advantages/limitations of Grassmannian representation to
solve dense NRSfM under joint 3D reconstruction and subspace
clustering framework.

2 RELATED WORK

Non-Rigid Structure from Motion (NRSfM) is more than a two-
decade-old problem and is still an active area of research in the
geometric computer vision. NRSfM using matrix factorization
introduced in the Bregler et.al. seminal work [4] was one the first
working algorithm for NRSfM, which in fact, was an extension to
the rigid factorization method [38]. This problem is challenging
due to the inherent unconstrained nature of the problem, as many
3D varying configurations can have similar image projections
and as a result, the problem remains unsolved for any arbitrary
deformations. However, many profound algorithms under some
or the other prior assumptions —about the object deformation or
the camera projection, have been proposed to achieve a reliable
solution to this problem [5] [10] [39] [11] [20] [21] [13] [3] [40].
The literature on this topic is very extensive and therefore, for
brevity, we review the works that are of close relevance to the
dense NRSfM methods under classical NRSfM setting2.

Earlier attempts to solve this problem used piecewise 3D
reconstruction of the shape parts, which were further processed
via a stitching step to get a global 3D shape [41] [42]. To
our knowledge, Garg et.al. [23] variational approach was one of
the first to propose and demonstrate a practical dense NRSfM
algorithm that do not rely on a 3D template prior. This method
introduced a discrete total variational constraint with trace norm
constraint on the global shape, which leads to a biconvex optimiza-
tion problem. Despite the algorithm’s outstanding performance,
it’s computationally expensive and needs a GPU to provide the
solution.

Recently, Dai et.al. [17] extended his simple prior free ap-
proach [5] to solve dense NRSfM problem. They proposed a
spatial-temporal formulation to tackle the problem. The author
revisits the temporal smoothness term from [5] and integrate
it with a spatial smoothness term using the Laplacian of the
non-rigid shape. The resultant optimization leads to a series of
least squares to be minimized, thus making it extremely slow to
process, hence, not scalable for practical settings.

The consecutive frame-based formulation in recent years has
shown some promising results to solve dense 3D reconstruction
of a general dynamic scene, including non-rigid object [43], [44].
Nevertheless, motion segmentation, triangulation, as rigid as pos-
sible assumption, scale consistency and inter-frame consistency
quite often breaks down for the deforming object. Therefore, these

2. By classical NRSfM setting, we mean the input to the algorithm is only
image feature correspondences rather than depth or 3D template.

ℝ"

Topological n-manifold

(a)

A Point on a Grassmann Manifold

(b)

Fig. 2: Grassmannian G (1, 2). (a) Intuition of n-manifold. (b) 1-
dimensional Euclidean subspace of R2 as a point on a Grassmann
Manifold. Fig.(b) is inspired from [48] work.

methods are still not mature to solve dense NRSfM for multiple
frames. Not long ago, Gallardo et.al. [45] combined shading,
motion and generic physical deformation to model dense NRSfM.
Nevertheless, such information is generally not available on many
real-world devices.

Other variants of dense non-rigid structure from motion al-
gorithm involve solving the problem in a sequential manner i.e.,
rather than using an entire batch of frames, solve for dense 3D re-
construction as the image arrives. However, the proposed method
under such a setting uses an initial set of frames to initialize
the algorithm using a rigid factorization algorithm [38], [46].
Such heuristics greatly limits the use of such a sequential method
to real-world scenarios. Recently proposed method CMDR [47]
proposed a hybrid approach extracts prior shape knowledge from
an input sequence and, uses it as a dynamic shape prior for
sequential surface recovery.

Recent state-of-the-art in sparse NRSfM uses joint subspace
clustering and reconstruction formulation [13] [21]. Yet, the nature
of the formulations fails to cope up with a large number of features
points, and its inherent representation is unable to exploit the
local surface deformation (spatially). However, the construction
of simultaneous clustering and 3D reconstruction framework does
provide an inspiration to extend such an idea to dense NRSfM.
In this work, we want to take a step further and would like to
show that it is, in fact, possible to develop the elementary idea
proposed in [21] for dense NRSfM using a new representation
and formulation.

3 PRELIMINARIES

In this paper, ‖.‖F, ‖.‖∗ denotes the Frobenius norm and nuclear
norm respectively. ‖.‖G represents the notion of a norm on the
Grassmann manifold. Single angle bracket < ., . > denotes the
Euclidean inner product. For ease of understanding and complete-
ness, in this section, we briefly review a few important defini-
tions related to the Grassmann manifold. Firstly, a topological
n-manifold (M ) is a topological space which is locally homeo-
morphic to a n-ball, where n is a positive integer which is well-
defined, which is the dimension of the manifold. Additionally,
space (M ) is assumed to be Hausdorff and second countable.
Avoiding the mathematical rigor, intuitively, one can think of a
continuous surface to be locally similar to the Euclidean space
(see Fig. 2(a)). Out of several manifolds, the Grassmann manifold
is a topologically rich non-linear manifold, each point of which
represents the set of all right invariant subspace of the Euclidean
space [25], [29], [36] (see Fig. 2(b)).
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Definition 3.1. The Grassmann manifold, denoted by G (p,d),
consists of all the linear p-dimensional subspace embedded in a
‘d’ dimensional Euclidean space Rd such that 0≤ p≤ d [29].

A point ‘Φ’ on the Grassmann manifold can be represented by
Rd×p matrix whose columns are composed of orthonormal basis.
The space of matrices with orthonormal columns is a Riemannian
manifold such that ΦTΦ= Ip, where Ip is a p×p identity matrix.

Definition 3.2. Grassmann manifold can be embedded into the
space of symmetric matrices via mapping Π: G (p,d) 7→ Sym (d),
Π(Φ) = ΦΦT, where Φ is a Grassmann point [49], [50]. Given two
Grassmann points Φ1 and Φ2, the distance between them can be
measured using a projection metric:

d2
g(Φ1,Φ2) = 0.5‖Π(Φ1)−Π(Φ2)‖2

F. (2)

These two properties of Grassmann manifold has been used in
many computer vision applications [49] [51] [36] [50]. Second
definition is very important as it allows to measure the distance on
the Grassmann manifold, hence, (G ,dg) forms a metric space. We
used these properties in the construction of our formulation. For
comprehensive details on this topic readers may refer to [49].

3.1 Why Grassmann Manifold?

It is well-known that the complex non-rigid deformations are
composed of multiple subspaces that quite often fit a higher-
order parametric model [52] [53] [20]. To handle such complex
models globally can be very challenging —both numerically and
computationally [3] [23]. Consequently, for an appropriate repre-
sentation of such a model, we decompose the overall non-linearity
of the shape by a set of locally linear models that span a low-
rank subspace of a vector space. The space of all d-dimensional
linear subspaces of RN (0 < d< N) forms the Grassmann manifold
[24] [29]. Modeling the deformation on this manifold allows us to
operate on the number of subspaces rather than on the number of
vectorial data points (on the shape), which reduces the complexity
of the problem significantly. Moreover, since each local surface is
a low-rank subspace, it can be faithfully reconstructed using a few
singular values and corresponding singular vectors, which makes
such a representation scalable and robust to noise [54].

4 PROBLEM FORMULATION

4.1 Structure and Motion Representation

Tomasi et.al. [38] matrix factorization method to represent the
shape and motion under orthographic camera projection appropri-
ately summarizes the behavior of the 3D points over frames. The
relation between 3D shape, motion and its projection over frames
was defined as

W= RS (3)

where, W ∈ R2F×P is the measurement matrix with ‘P’ as the
total number of feature points tracked across ‘F’ frames. R =
blockdiagonal(R1,R2, ..,RF)∈R2F×3F denotes the orthographic
camera rotation matrix with each Ri ∈R2×3 as per frame rotation.
S ∈ R3F×P represent the shape matrix with each row triplet as a
3D shape. This representation was originally formulated to solve
rigid structure from motion under orthographic projection which
was later extended by [4] to recover the 3D shape of a non-rigidly
deforming object for multiple frames.

This classical representation entails that given the input mea-
surement matrix, solve for rotation (R) and 3D shape (S). For
our method, we solve for rotation matrix using the Intersection
method [5] by assuming that per frame relative camera motion (R)
can faithfully represent the global deformation of the subject in
the scene. Accordingly, our goal reduces to develop a systematic
approach that can reliably explain the non-rigid shape deforma-
tions and provides better 3D reconstruction. We used this relation
to enforce our first constraint to solve for shape. This constraint is
also known as a re-projection error constraint i.e,

minimize
S

1
2
‖W−RS‖2

F (4)

4.2 Non-Rigid Object Representation
As alluded to above, given the matrix R, our goal is to solve for
the 3D structure S ∈ R3F×P. Eq:(3) show that we can get infinite
family of solution to S using such representation. Nonetheless,
Bregler et.al. [4] 3K matrix factorization to obtain low-order linear
model suggest that rank(S)≤ 3K. Consequently, the non-rigid 3D
shape must lie in a low-rank space. Later, Akther et.al. [2] and Dai
et.al. [5] suggested the idea to provide stronger rank bound to the
shape matrix by shuffling the arrangements of rows and columns
of shape matrix i.e, S ∈ R3F×P 7→ S] ∈ R3P×F. Accordingly, we
enforce the low-rank constraint on S] which equivalently represent
the low order constraint [4] [2] [5] with a tighter rank bound
rank(S]) ≤ K. Combining re-projection error constraint with the
low-rank constraint, we have

minimize
S,S]

1
2
‖W−RS‖2

F+ γ‖S]‖∗

subject to: S] = f (S)
(5)

where ‖S]‖∗ represent the nuclear norm of the shape matrix. Here,
we define f : S ∈ R3F×P 7→ S] ∈ R3P×F. In general, the exact rank
minimization problem is NP-hard, hence, we relax this with a
nuclear norm minimization problem. Dai et.al. [5] proposed this
formulation to solve non-rigid structure from motion problem.
Although this formulation provides a decent result for sparse
feature points, it fails to estimate dense non-rigid structure from
motion with reasonable accuracy. One of the main reasons for its
failure is that a non-rigid deforming surface is mostly composed
of a union of several local linear subspaces. Consequently, a
global low-rank shape constraint fails to cater the local shape
deformation, therefore, it provides questionable 3D reconstruction
results for a dense deforming object.

To overcome this limitation with [5] formulation, joint sub-
space clustering and reconstruction methods are proposed [13]
[21]. Although the method proposed by [13] [21] provides state-
of-the-art results for sparse features points [22], the algorithm
cannot process a large set of feature points, hence, not scalable.
To come up with an algorithm that is scalable and also utilize the
idea of spatial-temporal clustering approach for dense non-rigid
surfaces, we use grassmannian representation in our formulation
[24] [55].

4.3 Grassmannian Representation in Trajectory Space
Let ‘Φsi’ ∈ G (p,d) be a Grassmann point representing the ith

local linear subspace spanned by ith set of columns of ‘S’. Using
this notion, we decompose the entire trajectories of the structure
into a set of ‘Ks’ Grassmannians ξs = {Φs1,Φs2,Φs3, ....,ΦsKs}. To
explain the complex non-rigid deformations, we reduce the overall



5

non-linear space as a union of several local low-dimensional linear
spaces which are sample points on the Grassmann manifold. But,
the notion of self-expressiveness is valid only for Euclidean linear
or affine subspace. To apply self-expressiveness on the Grassmann
manifold one has to adopt linearity onto the manifold. Since,
Grassmann manifold is isometrically equivalent to the symmetric
idempotent matrices [56], we embed the Grassmann manifold
into the symmetric matrix manifold, where the self-expressiveness
can be defined in the embedding space. Let ‘χs’ be a tensor
which is constructed by mapping trajectory space Grassmann
points. Concretely, χ

s = {(Φs1ΦTs1),(Φs2ΦTs2), ...,(ΦKsΦTKs)} is its
embedding onto symmetric matrix manifold which is constructed
by mapping trajectory space Grassmann points. Since the high-
dimensional complex deformation is composed of several low-
dimensional subspace, its low rank representation shall reveal
the subspace information. This motivation leads to the following
optimization in the trajectory space

minimize
Es,Cs

‖Es‖2
F+λ1‖Cs‖∗

subject to: χ
s = χ

sCs+Es

(6)

We denote Cs ∈ RKs×Ks as the coefficient matrix with ‘Ks’ as
the total number of spatial groups. Here, Es measures the trajec-
tory subspace reconstruction error as per the manifold geometry.
Also, we would like to emphasize that since the object undergoes
deformations in the 3D space, we operate in 3D space rather than
in the projected 2D space. ‖ ‖∗ is enforced on Cs for a low-rank
solution.

4.4 Grassmannian Representation in Shape Space
Similarly, let ‘Φti’ ∈ G (p,d) be a Grassmann point representing
the ith local linear subspace spanned by ith set of columns
of ‘S]’. We decompose the set of shapes into ‘Kt’ Grassman-
nians ξt = {Φt1,Φt2,Φt3, ....,ΦtKt}. To accomplish the notion
of self-expressiveness in the temporal space as well, we define
χ
t = {(Φt1ΦTt1),(Φt2ΦTt2), ...,(ΦKtΦTKt)}. Previous literature and

experiments revealed that deforming object attains different state
over time which adheres to distinct temporal local linear subspaces
[21]. Assuming that the temporal deformation is smooth over-time,
we express deforming shapes in terms of local self-expressiveness
on grassmann manifold across frames as:

minimize
Et,Ct

‖Et‖2
F+λ2‖Ct‖∗

subject to: χ
t = χ

tCt+Et

(7)

where, χ
t is the set of all symmetric matrices constructed using

a set of Grassmannian samples ξt, where ξt contains the samples
which are obtained from S

]
t ∈ R3P×F. Intuitively, S]t is a shape

matrix with each column as a deforming shape. Et, Ct ∈ RKt×Kt

represent the temporal group reconstruction error and coefficient
matrix respectively, with Kt as the number of temporal groups.
‖ ‖∗ is enforced on Ct for a low-rank solution.

4.5 Simplified Low Rank Subspace Representation on
the Grassmann Manifold
The grassmannian representation in Eq.(6) and Eq.(7) are not
straight-forward to solve, we simplified it further to an equivalent
optimization problem which is easy to optimize. Consider the
following minimization problem

minimize
C

‖χ−χC‖2
F+λ‖C‖∗ (8)

Here, we choose the notations that stands for both Eq.(6) and
Eq.(7). To simplify the form of previous optimization problem,
let’s consider the error term that involves the tensor structure.

‖E‖2
F = ‖χ−χC‖2

F (9)

Using our notation χ = {(Φ1ΦT1),(Φ2ΦT2), ...,(ΦNΦTN)} and C∈RN×N

are the set of grassmann samples in the embedding space and its
coefficient matrix respectively. Let’s re-write the previous equation

‖E‖2
F =

N

∑
i=1
‖Ei‖2

F =
N

∑
i=1

Tr(ETiEi) (10)

Using the per sample notion i.e, any sample can be represented as
a combination of other samples in the same space.

Ei = ΦiΦ
T
i−

N

∑
j=1

cij(ΦjΦ
T
j) (11)

Substituting the above expression in Eq.(10) for the ith sample,
we write

‖Ei‖2
F = Tr(ETiEi)

= Tr
[(

ΦiΦ
T
i−

N

∑
j=1

cij(ΦjΦ
T
j)
)T(

ΦiΦ
T
i−

N

∑
j=1

cij(ΦjΦ
T
j)
)] (12)

Expanding the above form

‖Ei‖2
F = Tr

(
(ΦiΦ

T
i)

T(ΦiΦ
T
i)
)
−2

N

∑
j=1

cijTr
(
(ΦiΦ

T
i)

T(ΦjΦ
T
j)
)

+
N

∑
l=1

N

∑
m=1

cilcimTr
(
(ΦlΦ

T
l)

T(ΦmΦ
T
m)
) (13)

Using the cyclic trace property and the orthonormality property of
matrices (Definition 3.1).

‖Ei‖2
F = Tr(Ip)−2

N

∑
j=1

cijTr
(
(ΦTjΦi)(Φ

T
iΦj)

)
+

N

∑
l=1

N

∑
m=1

cilcimTr
(
(ΦTlΦm)(Φ

T
mΦm)

) (14)

Here p is the magnitude of the lower dimensional space represen-
tation (Definition 3.1). By letting Γij = Tr

(
(ΦTjΦi)(Φ

T
iΦj)

)
, we can

rewrite the above form as

‖Ei‖2
F = Tr(Ip)−2

N

∑
j=1

cijΓij +
N

∑
l=1

N

∑
m=1

cilcimΓlm (15)

Notice that Γij is Rp×p matrix which is much easier to compute
and process. Also, it’s simple to verify that Γij is symmetric. Let
Γ = (Γij)

N
ij=1 ∈ RN×N. By summing over all the samples , we can

rewrite Eq:(10) as:

‖E‖2
F = Np−2Tr(CΓ)+Tr(CΓCT)
≡ Np−2Tr(CLLT)+Tr(CLLTCT)
≡ const+‖L−CL‖2

F

(16)

where,LLT = Chol(Γ), the Cholesky decomposition of the matrix.
Note that adding and subtracting constant symbol w.r.t variable C
will not affect the solution to the targeted optimization problem.
Using this form, we simplify the Eq:(8) optimization problems as

minimize
C

‖L−CL‖2
F+λ‖C‖∗ (17)

This simplified equivalent problem is much easier to solve and
process. We will use this form in our overall cost function to solve
non-rigid 3D shape reconstruction.
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5 SPATIAL TEMPORAL FORMULATION

Combining the above developed objectives and their constraints
give us our spatial temporal formulation for dense NRSfM. Our
representation blends the local subspaces structure along with
the global composition of a non-rigid shape. Thus, the overall
objective is:

minimize
S,S],Es,Et,Cs,Ct

E =
1
2
‖W−RS‖2

F+µ‖S]‖∗+λ1‖Es‖2
F+λ2‖Et‖2

F

+λ3‖Cs‖∗+λ4‖Ct‖∗
subject to :
χ
s = χ

sCs+Es; χ
t = χ

tCt+Et;

ξs = fg(Ps,S,Ks,ps); ξt = fg(Pt,S
],Kt,pt);

S= fs(ξs,Σs,ξvs,Ks,ps); S] = fs(ξt,Σt,ξvt,Kt,pt);
Ps = fp(ξs,Cs,Pso); Pt = fp(ξt,Ct,Pto);

S] = f (S); W= fo(W,Ps);
(18)

We introduce few constraint functions that provides a way to group
Grassmannians and recover 3D shape simultaneously. Let Ps ∈
R1×P, Pt ∈ R1×F be an ordering vector that contains the index
of columns of S and S] respectively. Our function definition is of
the form {(output, function(.)) : definition}. Using it, we define the
function fg, fs, fp, f , fo as follows:{(

ξ , fg(P,X,K,p)
)

: order {Xi}Ki=1 columns of X using P,

ξ :=
(
Φi
∣∣K
i=1

)
, where, [Φi,Σi,ξ T

vi] = svds(Xi,p)
} (19)

{(
X, fs(ξ ,Σ,ξv,K,p)

)
: Xi = [ξi Σi ξ

T
vi],where Σi ∈ Rp×p,

X=
(
Xi
∣∣K
i=1

)} (20)

{
(P, fp(ξ ,C,Po) : P = spectral clustering(ξ ,C,Po)

}
(21)

{
(X], f (X) : X ∈ R3F×P 7→ X] ∈ R3P×F

}
(22)

{
(X, fo(X,P)) : X= arrange columns of X using ordering vector P

}
(23)

Note:
(
Xi
∣∣K
i

)
denoted the horizontal concatenation of the matrices.

Intuitively, fg(.) provides the Grassmannian representation and
fs(.) reconstructs back each local low-rank subspace. fp(.) pro-
vides the ordering vector based on the inference drawn from co-
efficient matrix and fo rearranges the columns of W in accordance
with the columns of the shape matrix. The proposed cost function
is minimized by solving for one variable at a time while treating
others as constant, keeping the constraints intact over iteration.
Next, we provide a detailed derivation to each sub-problem.

5.1 Solution

The formulation in Eq.(18) is a non-convex problem due to the bi-
linear optimization variables (χsCs, χ

tCt), hence a global optimal
solution is hard to achieve. However, it can be efficiently solved
using Augmented Lagrangian Methods (ALMs) [34], which has
proven its effectiveness for many non-convex problems. Using
the result of Eq.(17) with introduction of Lagrange multipliers
({Li}3

i=1) and auxiliary variables (Js,Jt) to Eq. (18) gives us the
overall cost function as follows:

minimize
S,S],Js,Jt,Cs,Ct

E =
1
2
‖W−RS‖2

F+
β

2
‖S]− f (S)‖2

F+< L1,S
]− f (S)>

γ‖S]‖∗+λ1‖Ls−CsLs‖2
F+λ3‖Js‖∗+λ2‖Lt−CtLt‖2

F+λ4‖Jt‖∗+
β

2
‖Cs−Js‖2

F+< L2,Cs−Js >+
β

2
‖Ct−Jt‖2

F+< L3,Ct−Jt >

subject to :

ξs = fg(Ps,S,Ks,ps); ξt = fg(Pt,S
],Kt,pt);

S= fs(ξs,Σs,ξvs,ps,Ks); S] = fs(ξt,Σt,ξvt,pt,Kt);
Ps = fp(ξs,Cs,Pso); Pt = fp(ξt,Ct,Pto);

S] = f (S); W= fo(W,Ps);
(24)

Solution to S

argmin
S

1
2
‖W−RS‖2

F+
β

2
‖S]− f (S)‖2

F+< L1,S
]− f (S)>

argmin
S

1
2
‖W−RS‖2

F+
β

2
‖ f−1(S])−S‖2

F+< f−1(L1), f−1(S])−S>

≡ argmin
S

1
2
‖W−RS‖2

F+
β

2
‖S−

(
f−1(S])+

f−1(L1)

β

)
‖2
F.

(25)
The solution to the variable ‘S’ can be derived by differentiating
the above term w.r.t S and equating it to zero.

S≡
(
RTR+βI

)−1(
β
(

f−1(S])+
f−1(L1)

β

)
+RTW

)
(26)

Solution to S]

≡ argmin
S]

γ‖S]‖∗+
β

2
‖S]− f (S)‖2

F+< L1,S
]− f (S)>

≡ argmin
S]

γ‖S]‖∗+
β

2
‖S]−

(
f (S)− L1

β

)
‖2

F

(27)

Let’s define the soft-thresholding operation as Sτ [x] = sign(x)
max(|x|− τ,0). The optimal solution to S] is given by

S] ≡ US γ

β

(Σ)VT where, [U,Σ,VT] = svd( f (S)− L1

β
) (28)

Solution to Cs

≡ argmin
Cs

λ1‖Ls−CsLs‖2
F+

β

2
‖Cs−Js‖2

F+< L2,Cs−Js >

≡ argmin
Cs

λ1‖Ls−CsLs‖2
F+

β

2
‖Cs−

(
Js−

L2

β

)
‖2
F

(29)

The solution to Cs can be derived by differentiating the above term
w.r.t Cs and equating it to zero.

Cs ≡
(

2λ1LsL
T
s+β (Js−

L2

β
)
)(

2λ1LsL
T
s+βIs

)−1
(30)

Solution to Ct
Similar to the Cs derivation, it’s solution can be derived as

follows:

≡ argmin
Ct

λ2‖Lt−CtLt‖2
F+

β

2
‖Ct−Jt‖2

F+< L3,Ct−Jt >

≡ argmin
Ct

λ2‖Lt−CtLt‖2
F+

β

2
‖Ct−

(
Jt−

L3

β

)
‖2

F

(31)

Ct ≡
(

2λ2LtL
T
t+β (Jt−

L3

β
)
)(

2λ2LtL
T
t+βIt

)−1
(32)
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Algorithm 1 Dense Non-Rigid Structure from Motion using Grassmannians

Require: W, R using [5], tuning parameters: λ1, λ2, λ3, λ4, γ , ρ = 1.1, β = 1e−3, βm = 1e6, ε = 1e−12, Ks, Kt.
Initialize: S = pinv(R)W and S] = f (S).
Initialize: ‘Kt’ temporal data points on the Grassmann manifold using Pto = kmeans++(S],Kt) index to ‘S]’ matrix, ξt = {Φti}Kti=1
Initialize: ‘Ks’ spatial data points on the Grassmann manifold using Pso = kmeans++(S,Ks) index to ‘S’ matrix, ξs = {Φsi}Ksi=1
Initialize: The auxiliary variables Js, Jt and Lagrange multiplier {Li}3

i=1 as zero matrices.
Initialize: Γsij = Tr[(ΦTsjΦsi)(ΦTsiΦsj)], Γtij = Tr[(ΦTtjΦti)(ΦTtiΦtj)], Γs = (Γsij)

Ks
i,j=1,Γt = (Γtij)

Kt
i,j=1

LsL
T
s = Chol(Γs), LtLTt = Chol(Γt)

Initialize: Ps := Pso, Pt := Pto, iter = 1
Define: Sτ(x) := @(x,τ)sign(x).∗max(abs(x)− τ,0); {MATLAB function script}

1: while not converged do
2: S←

(
RTR+βI

)−1(
β
(

f−1(S])+ f−1(L1)
β

)
+RTW

)
3: Cs ←

(
2λ1LsL

T
s+β (Js− L2

β
)
)(

2λ1LsL
T
s+βIs

)−1

4: ξs ← fg(Ps,S,Ks,ps); {Update spatial Grassmann points}
5: S ← fs(ξs,Σs,ξvs,Ks,ps); {Refine based on top ps singular values}
6: Js← UJsS λ3

β

(ΣJs)V
T
Js
, where [UJs ,ΣJs ,V

T
Js
] = svd(Cs+

L2
β
)

7: S]← US γ

β

(Σ)VTwhere, [U,Σ,VT] = svd( f (S)− L1
β
)

8: Ct←
(

2λ2LtL
T
t+β (Jt− L3

β
)
)(

2λ2LtL
T
t+βIt

)−1

9: ξt← fg(Pt,S
],Kt,pt) {Update temporal Grassmann points}

10: S]← fs(ξt,Σt,ξvt,Kt,pt); {Refine based on top pt singular value}
11: Jt← UJtS λ4

β

(ΣJt)V
T
Jt
,where [UJt ,ΣJt ,V

T
Jt
] = svd(Ct+

L3
β
)

12: Γsij ← Tr[(ΦTsjΦsi)(ΦTsiΦsj)], Γtij← Tr[(ΦTtjΦti)(ΦTtiΦtj)];
13: Γs← (Γsij)

Ks
i,j=1,Γt← (Γtij)

Kt
i,j=1; {Γs � 0,Γt � 0, if Γs||Γt = 0 add δ I to make it � 0 }

14: LsL
T
s = Chol(Γs), LtLTt = Chol(Γt);

15: Ps = fp(ξs,Cs,Ps); Pt = fp(ξt,Ct,Pt);
16: W← fo(W,Ps) {Note: Column ordering of W and S must be same.}
17: L1 := L1 +β (S]− f (S)), L2 := L2 +β (Cs−Js), L3 := L3 +β (Ct−Jt); {Update Lagrange multipliers}
18: β ←min(ρβ ,βm)
19: maxgap := max([‖S]− f (S)‖∞,‖Cs−Js‖∞,‖Ct−Jt‖∞])
20: if (maxgap < ε ∨ β > βm) then
21: break;
22: end if {Check for the convergence}
23: iter := iter+1
24: end while {Note: δ is a very small positive number and I symbolizes identity matrix.}
Ensure: S, S], Cs, Ct. {Note: Kindly use economical version of ‘svd()’ on a regular desktop.}

Solution to Js

≡ argmin
Js

λ3‖Js‖∗+
β

2
‖Cs−Js‖2

F+< L2,Cs−Js >

≡ argmin
Js

λ3‖Js‖∗+
β

2
‖Js−

(
Cs+

L2

β

)
‖2
F

(33)

Similar to Eq.(28) derivation, we use the soft-thresholding opera-
tion. It’s optimal solution can be obtained as

Js ≡ UJsS λ3
β

(ΣJs)V
T
Js , where [UJs ,ΣJs ,V

T
Js ] = svd(Cs+

L2

β
) (34)

Solution to Jt

≡ argmin
Jt

λ4‖Jt‖∗+
β

2
‖Ct−Jt‖2

F+< L3,Ct−Jt >

≡ argmin
Jt

λ4‖Jt‖∗+
β

2
‖Jt−

(
Ct+

L3

β

)
‖2
F

(35)

Jt ≡ UJtS λ4
β

(ΣJt)V
T
Jt , where[UJt ,ΣJt ,V

T
Jt ] = svd(Ct+

L3

β
) (36)

The pseudo-code with few MATLAB script of our implementation
is provided in Algorithm (1). This divide and conquer approach
works well for most of the available benchmark dataset, however,
to make our method more robust to a real-world setting, we
took our idea a step further. We know that high-dimensional data
representation can be inferior in the presence of noise and outliers
unless some filtering techniques are employed. Therefore, we
must introduce the notion of low-dimensional representation on
Grassmann manifold which preserves the important geometrical
information and lets us get rid of noisy information in the data.
Inquest of implementing this idea, we proposed a geometry aware
extension to our previously proposed dense NRSfM algorithm.

6 GEOMETRY AWARE IDEA

6.1 Motivation
The key insight in the last algorithm is; even though the overall
complexity of the deforming shape is high, each local deformation
may be less complex. Using this idea, we developed a union of
local linear subspace approach to solve dense NRSfM problem.
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Despite its excellent performance, it has some practical concerns.
Firstly, the intrinsic issues associated with the modeling of a non-
rigidly deforming surface via a high-dimensional Grassmannian
representation. Now, such a representation may help reconstruct
complex 3D deformation but can lead to wrong clustering —curse
of dimensionality [57], and it’s very important in a joint recon-
struction and clustering framework to have suitable clusters of
subspaces, else reconstruction may suffer. Secondly, the approach
to represent local non-linear deformation completely ignores the
neighboring surfaces, which may result in an inefficient represen-
tation of the Grassmannians in the trajectory space. Thirdly, the
representation of Grassmannians in the shape space can result in
irredeemable discontinuity of the trajectories (see Fig.(3)). Hence,
temporal representation of the set of shapes using Grassmannians
seems not an extremely beneficial choice for modeling dense
NRSfM on Grassmannian manifold, unless prior information
is available which in general is not known. Lastly, although the
dense NRSfM algorithm proposed in Algorithm (1) works better
and faster than the previous methods, it depends on several manual
parameters which are inadmissible for practical applications.

Hence, we extend the idea of our previous approach that can
overcome the aforementioned limitations with Algorithm (1). The
main point we are trying to make is that; reconstruction and
grouping of subspace on the same high dimensional Grassmann
manifold seem like an unreasonable choice. Even recent research
in the Riemannian geometry has shown that the low dimensional
representation of the corresponding high dimensional Grassmann
manifold is more favorable for grouping Grassmannians [58] [55].
So, inspired from these past work, we formulate dense NRSfM in
a way that it takes advantage of both high and low dimensional
representation of Grassmannians i.e., perform reconstruction in
the original high-dimension manifold and cluster subspace on its
corresponding low-dimension manifold representation.

We devise an unsupervised approach to efficiently repre-
sent the high-dimensional Grassmannians to a lower-dimensional
Grassmann manifold via a projection operation. These low-
dimensional Grassmannians are represented in such a way, it pre-
serves the local structure of the surface deformation in accordance
with its neighboring surfaces. These low-dimensional Grassman-
nians serves as a potential representative for its high-dimensional
Grassmannians for suitable grouping, which subsequently helps
improve the reconstruction and representation of the Grassman-
nians on the high-dimensional Grassmann manifold. Further, we
drop the temporal grouping of shapes using Grassmannians to
discourage the discontinuity of trajectories (see Fig.(3)).

In essence, our modification is inspired by the previously
developed idea and is oriented towards settling its important
limitations. Moreover, in contrast to Algorithm (1), we capture
the notion of dependent local subspace in a union of subspace
algorithm via Grassmannian modeling [14]. The algorithm we
proposed is an attempt to supply a more efficient, reliable and
practical solution to this problem. Our new formulation gives an
efficient framework for modeling dense NRSfM on the Grassmann
manifold. We observed empirically that this method is more
useful and is as accurate and efficient than Algorithm (1). The
performance of this algorithm stands superior in handling noise.
The main highlights of this algorithm are as follows:

1) An efficient framework for modeling non-rigidly deforming
surface that exploits the advantage of Grassmann manifold
representation of different dimensions based on its geometry.

2) A formulation that encapsulates the local non-linearity of the

1"#Grassmann Point

2%&Grassmann Point

K#(Grassmann Point

Frames

Fig. 3: Temporal representation using Grassmannians in the shape
space introduces discontinuity in the overall trajectory of the feature
point. Also, to define neighboring subspace dependency graph in
the time domain seems very challenging keeping in mind that the
activity/expression may repeat. Red circle shows the feature point
with its trajectory over frames (Black).

deforming surface w.r.t its neighbors to enable the proper
inference and representation of local linear subspaces.

3) An iterative solution to the proposed cost function based
on ADMM [34], which is simple to implement and provide
results as good as Algorithm(1) and in addition to that, it
helps improve the 3D reconstruction substantially, in the case
of noisy trajectories.

6.2 New Grassmannian Representation

To properly represent Grassmannian which respects the neigh-
boring non-linearity in low-dimension, we introduce a different
strategy to model non-rigid surface in low-dimension. For now, let
∆ ∈ Rd×d̃ be a matrix that maps ‘Φi’ ∈ G (p,d) to ‘φi’ ∈ G (p, d̃)
such that d̃< d. Mathematically,

φi = ∆TΦi (37)

Its quite easy to examine that φ i is not a orthogonal matrix and,
therefore, may not qualify as a potential point on a Grassmann
manifold. However, by performing a orthogonal-triangular (QR)
decomposition of φ i, we estimate the new representative of φ i on
the Grassmann manifold of ‘d̃’ dimension.

ΘiUi = qr(φi) = ∆TΦi (38)

Here, qr(.) is a function that returns the QR decomposition of
the matrix. The Θi ∈Rd̃×p is an orthogonal matrix and Ui ∈Rp×p

is the upper triangular matrix3. Using Eq.(38), we represent the
equivalence of Φi in low dimension as

Θi = ∆T(ΦiU
−1
i )

Θi = ∆TΩi
(39)

where, Ωi = ΦiU
−1
i ∈ Rd×p. The key-point to note is that both Θi

and φi has the same column space. In principle such a representa-
tion is useful however, it does not serve the purpose of preserving
the non-linearity w.r.t its neighbors. In order to encapsulate the
local dependencies (see Fig.(4), Fig.(5)), we further constrain our
representation as:

E(∆) = minimize
∆

K

∑
(i,j)

wij
1
2
‖Π(Θi)−Π(Θj)‖F2 (40)

3. Note: The value of d̃ ≥ p, Use [Θi,Ui] = qr(φi,0) in MATLAB to get a
square Ui matrix (Ui ∈ Rp×p)
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i"# Grassmann point (	Θi) 
j"# Neighbor Grassmann point (	Θj) 

X

Y

Z

Fig. 4: In contrast to Algorithm (1) representation, the modeling
of surface using Grassmannians considers the similarity between the
neighboring Grassmannians while representing it in the lower dimen-
sion. Based on the assumption that spatially neighboring surface tend
to span similar subspace, defining neighboring subspace dependency
graph is easy and, most of the real-world examples follows such an
assumption. However, building such graph in shape space can be
tricky.

The parameter ‘wij’ accommodate the similarity knowledge be-
tween the two Grassmannians. Using the Definition(3.2) and
Eq.(39), we further simplify Eq.(40) as

E(∆)≡minimize
∆

K

∑
(i,j)

wij
1
2
‖∆TΩiΩTi∆−∆TΩjΩTj∆‖2

F

E(∆)≡minimize
∆

K

∑
(i,j)

wij
1
2
‖∆T(ΩiΩTi−ΩjΩTj)∆‖2

F

E(∆)≡minimize
∆

K

∑
(i,j)

wij
1
2
‖∆T(Λij)∆‖2

F

(41)

where, Λij ∈ Sym(d). The parameter ‘wij’ (similarity graph)
is set as exp(−d2

g(Φi,Φj)) with dg as the projection metric (see
Definition (3.2)). Eq.(41) is an unconstrained optimization prob-
lem and its solution may provide a trivial solution. To estimate
the useful solution, we further constrain the problem. Using ith

Grassmann point ‘Ωi’ and its neighbors, expand Eq.(41). By
performing some simple algebraic manipulation, Eq.(41) reduces
to

Tr
(
∆T
( K

∑
i=1

λ iiΩiΩ
T
i

)
∆
)

(42)

where, λ ii = ∑
K
j=1wij. Constraining the value of Eq.(42) to 1

provides the overall optimization for an efficient representation of
the local non-rigid surface on the Grassmann manifold.

E(∆)≡minimize
∆

K

∑
(i,j)

wij
1
2
‖∆T(Λij)∆‖2

F

subject to:

Tr
(
∆T
( K

∑
i=1

λ iiΩiΩ
T
i

)
∆
)
= 1

(43)

Its easy to verify that the matrix ‘Λ’ and ‘
(

∑
K
i=1 λ iiΩiΩ

T
i

)
’

are symmetric and positive semi-definite, and therefore, the above
optimization can be solved as a generalized eigen value problem.

6.3 Solution to E(∆)

E(∆)≡minimize
∆

K

∑
(i,j)

wij
1
2
‖∆T(Λij)∆‖2

F

subject to:

Tr
(
∆T
( K

∑
i=1

λiiΩiΩ
T
i

)
∆
)
= 1

(44)

!(p, d&)

!(p, d)
High Dimensional 

Grassmann Manifold

Low Dimensional 
Grassmann Manifold

(a) (b) (c)

X

Y

Z
X

Y

Z

3D Reconstruction

Fig. 5: Conceptual illustration of our modeling (a) Modeling of 3D
trajectories to Grassmann points (b) The two grassmann manifold and
mapping of the points between them to infer better cluster index that
leads to better reconstruction (c) The 3D reconstruction of the non-
rigid deforming object.

The optimization equation proposed for E(∆) is a well-studied
optimization form and Riemann Conjugate gradient toolbox can
be employed to achieve the solution. Nevertheless, we can also
derive augmented lagrangian form to solve the same problem. By
letting X =

(
∑
K
i=1 λiiΩiΩ

T
i

)
and expanding the Frobenius norm

term, we can re-write the equation as:

E(∆)≡minimize
∆

K

∑
(i,j)

wij

2
Tr
(
∆TΛij∆∆

TΛij∆
)

E(∆)≡minimize
∆

Tr
(
∆T

K

∑
(i,j)

wij

2
Λij∆

t−1∆(t−1)TΛij∆
)

subject to:

Tr
(
∆TX∆

)
= 1

(45)

Here, t− 1 refers to its known value before the current iteration.
Now, by assuming Y =

wij
2 Λij∆

t−1∆(t−1)TΛij, the above equation
simplifies to standard eigen value decomposition problem i.e,

E(∆)≡minimize
∆

Tr(∆TY∆)

subject to:

Tr
(
∆TX∆

)
= 1

(46)

The equivalent Lagrangian function form is given by

Tr(∆TY∆)+λ

(
1−Tr

(
∆TX∆

))
(47)

Eq.(47) is in the generalized eigen value problem form. Any
standard linear algebra package can be used to solve it.

6.4 Geometry Aware Extension
Similar to the previous algorithm, we introduce the local subspace
constraint on the shape, we use the notion of self-expressiveness
on the non-linear Grassmann manifold space.

minimize
E,C,S]

‖E‖2
G +β2‖S]‖∗+β3‖C‖∗

subject to: S] = f (S), S= SC+E

(48)

As defined before f : S∈R3F×P 7→ S] ∈R3P×F and C∈RP×P as
the coefficient matrix. We know from our previous discussion that
the Grassmann manifold is isometrically equivalent to the symmet-
ric idempotent matrix [56]. So, we embed the Grassmann manifold
into symmetric matrix manifold to define the self-expressiveness.
Let ξ̃s = {Θ1,Θ2, ...,ΘK} be the set of Grassmannians on a low
dimensional Grassmann manifold. The elements of ξ̃s are the
projection of high dimensional Grassmannian representation of
the columns of ‘S’ matrix. Let χ = {(Θ1Θ

T
1),(Θ2Θ

T
2), ...,(ΘKΘ

T
K)}
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be its embedding onto symmetric matrix manifold. Using such
embedding techniques we re-write Eq.(48) as

minimize
E,C̃,S]

‖E‖2
F+β2‖S]‖∗+β3‖C̃‖∗

subject to:S] = f (S),χ = χ C̃+E

(49)

where, C̃ ∈ RK×K and χ ∈ Rd̃×d̃×K denotes the coefficient matrix
of Grassmannians and structure tensor respectively, with K as the
total number of Grassmannians. Generally, K<< P, which makes
such representation scalable.

Similar to previous notations, let P ∈ R1×P be an ordering
vector that contains the index of columns of S. Also, using the
the function definition form {(output, function(.)) : definition}, we
define fh as

{(
ξ̃s, fh(∆,ξs)

)
: ξ̃s = {Θi}Ki=1,Θi = ∆T(ΦiU

−1
i ),

where, ∆= solution to the minimization of Eq.(43)
} (50)

Intuitively, The function ( fh) projects the Grassmannians to a
lower dimension in accordance with the neighbors using Eq.(43)
Objective Function: Combining all the above terms and con-
straints provides our overall cost function.

minimize
E,C̃,S,S]

1
2
‖W−RS‖2

F+β1‖E‖2
F+β2‖S]‖∗+β3‖C̃‖∗

subject to:

S] = f (S),χ = χ C̃+E,

ξs = fg(P,S,K,p), ξ̃s = fh(∆,ξs),

S= fs(ξs,Σ,ξv,K,p),P = fp(ξ̃s, C̃,Pso)

(51)

where Po vector contains the initial ordering of the columns of
‘W’ and ‘S’. The function ( fp) provides the ordering index to
rearrange the columns of ‘S’ matrix to be consistent with ‘W’
matrix. This is important because, grouping the set of columns of
‘S’ over iteration, disturbs its initial arrangements. The definition
of fg, fs and fp is same as outlined in Eq(19), Eq(20) and Eq(21)
respectively.

6.5 Solution
The optimization proposed in Eq.(51) is a coupled optimization
problem. Several methods of Bi-level optimization can be used
to solve such minimization problem [59], [60]. Nevertheless, we
propose ADMM [34] based solution due to its application in
many non-convex optimization problems. The key point to note
is that one of our constraint is composed of separate optimization
problem ( fh) i.e., the solution to Eq.(43), and therefore, we cannot
directly embed the constraint to the main objective function.
Instead, we only introduce two Lagrange multiplier L1,L2 to
concatenate a couple of constraints back to the original objective
function. The remaining constraints are enforced over iteration. To
decouple the variable C̃ from χ , we introduce auxiliary variable
C̃ = Z. We apply these operations to our optimization problem to
get the following Augmented Lagrangian form:

minimize
Z,C̃,S,S]

1
2
‖W−RS‖2

F+β1‖χ−χ C̃‖2
F+β2‖S]‖∗+

β

2
‖S]− f (S)‖2

F+

< L1,S
]− f (S)>+β3‖Z‖∗+

β

2
‖C̃−Z‖2

F+< L2, C̃−Z>

subject to:

ξs = fg(P,S,K,p), ξ̃s = fh(∆,ξs)

S= fs(ξs,Σ,ξv,K,p), P = fp(ξ̃s, C̃,Po)
(52)

Algorithm 2 Geometry Aware Dense NRSfM

Require: W, R, {βi}3
i=1, β=e−2, βm=e8, ε=e−10, c =1.1, K;

Initialize: S=pinv(R)W, S]= f (S), Z=0, {Li}2
i=1=0, d̃;

∆ = [Id̃×d̃; random values], p %top singular values
Pso = kmeans++(S,K), iter = 1, Pstore(iter, :) = Pso,
P = Pso

Define: Sτ(x) := @(x,τ)sign(x).∗max(abs(x)− τ,0);
while not converged do

1. S := mldivide
(
RTR+βI, β ( f−1(S])+ f−1(L1)

β
)+RTW

)
;

2. ξs := fg(P,S,K,p); see Eq.(19)
3. W := arrange column(P,W)
4. Update the similarity matrix ‘wij’ using ξs. §6.2
5. ξ̃s := fh(ξs,∆); s.t,∆≡minimize

∆
E(∆); see Eq.(50)

6. Γij = Tr[(ΘTjΘi)(ΘTiΘj)];Γ= (Γij)
K
ij=1;L= Chol(Γ)

7. C̃ :=
(
2β1LL

T+β (Z− L2
β
)
) (

2β1LL
T+βI

)−1;
8. P := fp(ξ̃s, C̃,P);
9. S := fs(ξs,Σ,ξv,K,p); see Eq.(19), Eq.(20)
10. S] := UsS β2

β

(Σs)Vs; s.t, [Us,Σs,Vs] := svd( f (S)− L1
β
)

11. Z := UzS β3
β

(Σz)Vz; s.t, [Uz,Σz,Vz] := svd(C̃+ L2
β
);

12. L1 := L1 +β (S]− f (S));L2 := L2 +β (C̃−Z)
13. iter := iter+1; Pstore(iter, :) := P;
14. β := min(βm,cβ );
15. gap := max{‖S]− f (S)‖∞,‖C̃−Z‖∞};
(gap < ε)∨ (β > βm)→ break;%convergence check

end while
return S;

e3D = Estimate error (Sest = S,SGT,Pstore); %use Eq.(53)

Note that C̃ provides the information about the subspace, not the
vectorial points. However, we have the chart of the trajectories
and its corresponding subspace. Once, we group the trajectories
based on C̃, fg(.) provides new Grassmann sample corresponding
to each group. The definition of fh(.) and fs(.) is provided in
Eq.(43) and Eq.(20) respectively. More generally, the solution
to the optimization in Eq.(43) is obtained by solving it as a
generalized eigenvalue problem. To keep the order of columns of
‘S’ matrix consistent with ‘W’ matrix fp(.) provides the ordering
index. We provide the implementation details of our method with
suitable MATLAB commands in the Algorithm (2).

7 EXPERIMENTAL EVALUATION

We performed extensive qualitative and quantitative evaluations on
the available standard benchmark datasets [3] [35] [30]. To keep
our evaluations consistent with the previous methods, we compute
the average 3D reconstruction quality of the estimated shape ‘Sest’
using the following equation

e3D =
1
F

F

∑
i=1

‖Siest−SiGT‖F
‖SiGT‖F

(53)

here, ‘SGT’ denotes the ground-truth 3D shape matrix. The qual-
itative results for both the algorithm looks very similar, yet, they
are statistically different (see Table 1).
Initialization: The initialization for both the algorithms are
straight-forward and outlined in the respective algorithm table.
In brief, we used Intersection method [5] to estimate the rotation
matrix and initialize S= pinv(R)W. The initial grouping of the tra-
jectories or columns of S is done using k-means++ algorithm [31].
These initial grouping is used to initialize the ordering vector Po,
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(a) Ground-Truth

(b) Our Result

Fig. 6: Reconstruction results obtained on synthetic dense face dataset (face sequence 4). Top row : Ground-truth 3D points, Bottom row :
Recovered 3D shape using Algorithm 1. Visually, the 3D reconstruction results recovered using both the algorithms looks very similar.

P and, the Grassmann points {Φi}Ki=1 ∈ ξ via subset of singular
vectors. To represent the Grassmannians in the lower-dimension,
we solve Eq.(44) to initialize ξ̃ and store corresponding singular
values. The similarity matrix or graph in Eq.(44) is constructed
using the distance measure between the Grassmannians in the
embedding space §6.2.
1. Results on synthetic Face dataset: The synthetic face dataset
is composed of four distinct sequence [3] with 28,880 feature
points tracked over multiple frames. Each sequence captures the
human facial expression with a different range of deformations
and camera motion. Sequence 1 and Sequence 2 are 10 frame
long video with rotation in the range ±30◦ and ±90◦ respectively.
Sequence 3 and Sequence 4 are 99 frame long video that contains
high frequencies and low frequencies rotation respectively. It’s a
challenging dataset mainly due to different rotation frequencies
and deformations in each of the facial expression sequence. Table
(1) shows the statistical results obtained on these four sequences
using both of our algorithms. Fig.(6) show the qualitative results
on face sequence 4 of the dataset.
2. Results on Paper and T-shirt dataset: To evaluate our per-
formance on smooth deforming surfaces, we used Varol et.al. [35]
‘kinect paper’ and ‘kinect tshirt’ datasets. This dataset provides
real condition to test the performance of NRSfM algorithm. It pro-
vides sparse SIFT [61] feature tracks and noisy depth information
captured from Microsoft Kinect for all the frames. As a result, to
get dense 2D feature correspondences of the non-rigid object for
all the frames becomes difficult. To circumvent this issue, we used
Garg et.al. algorithm [62] to estimate the measurement matrix.
Numerically, we compute the correspondence of the deforming
subject within xw = (253,253,508,508), yw = (132,363,363,132)
rectangular window across 193 frames for kinect paper sequence.
For kinect tshirt sequence, we considered rectangular window of
xw = (203,203,468,468), yw = (112,403,403,112) across 313
frames. Fig.(7) shows couple of 3D reconstruction results on these
sequence with comparative results specified in Table (1).
3. Results on Actor dataset: Beeler et.al. [30] introduced Actor
dataset for high-quality facial performance capture. This dataset
is composed of 346 frames captured from seven cameras with
1,180,232 vertices. The dataset captures the fine details of facial
expressions which is extremely useful in the testing of NRSfM
algorithms. Nevertheless, for our experiment, we require dense 2D
image feature correspondences across all images as input, which

we synthesized using ground-truth 3D points and synthetically
generated orthographic camera rotations. To maintain the consis-
tency with the previous works in dense NRSfM for performance
evaluations, we synthesized two different datasets namely Actor
Sequence1 and Actor Sequence2 based on the head movement
as described in Ansari et.al. work [16]. Fig.(7) show the dense
detailed reconstruction that is achieved using our algorithms. Table
(1) clearly indicates the superior performance of our approach on
this high-quality dense dataset.
4. Results on Face, Heart, Back dataset: To evaluate the vari-
ational approach to dense NRSfM Garg et.al. [3] introduced this
dataset. This dataset is composed of monocular video’s captured
in a natural environment with varying lighting condition and
large displacements. It consists of three different videos with 120,
150 and 80 frames for face sequence, back sequence and heart
sequence respectively. Furthermore, this dataset provides dense 2D
feature tracks for these 3 categories. Specifically, face, back and
heart sequence is composed of 28332, 20561, and 68295 features
tracks respectively. Ground-truth 3D is not available with this
dataset for evaluation. Fig.(7) show some qualitative 3D recon-
struction results on face, back and heart sequence. The qualitative
results —shown in Fig.(7), demonstrate that our approach is able
to estimate the 3D reconstruction of a deforming subject reliably
and accurately.

7.1 Algorithmic Analysis
We performed several other experiments to understand the
behavior of our algorithm under different input parameters and
evaluation setup. In practice these experiments help analyze the
practical applicability of our algorithm.

1. Processing Time and Convergence: The execution time for
both the algorithm (Algorithm 1 and Algorithm 2) is more or
less same. Nevertheless, in comparison to other previous methods
our processing time is far better. We computed the processing
time on commodity desktop machine with 16GB RAM suing
MATLAB R2019b software. Fig.(8(a)) show the processing time
of our method in comparison to other methods on different
datasets. Ideally, our algorithm takes 120-150 iteration to provide
an optimal solution to the problem.
2. Performance over noisy trajectories: We utilized the standard
experimental procedure to analyze the behavior of our algorithm
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(a) Real Image Sequence

(b) 3D Reconstruction Results
Fig. 7: Reconstruction results obtained on real dataset sequence. Top row: Real image sequence, Bottom row: Recovered 3D shape using our
approach. Left to Right: Actor [30], Back [3], Face [3], Heart [3], kinect paper [35], kinect tshirt [35] dataset.

Dataset ↓ / Method→ MP PTA CSF1 CSF2 DV DS SMSR Algorithm 1 Algorithm 2
Face Sequence 1 0.0926 0.1559 0.5325 0.4677 0.0531 0.0636 0.1893 0.0443 0.0404
Face Sequence 2 0.0819 0.1503 0.9266 0.7909 0.0457 0.0569 0.2133 0.0381 0.0392
Face Sequence 3 0.1057 0.1252 0.5274 0.5474 0.0346 0.0374 0.1345 0.0294 0.0280
Face Sequence 4 0.0717 0.1348 0.5392 0.5292 0.0379 0.0428 0.0984 0.0309 0.0327
Actor Sequence 1 0.5226 0.0418 0.3711 0.3708 - 0.0891 0.0352 0.0340 0.0274
Actor Sequence 2 0.2737 0.0532 0.2275 0.2279 - 0.0822 0.0334 0.0342 0.0289
Paper Sequence 0.0827 0.0918 0.0842 0.0801 - 0.0612 - 0.0394 0.0338
T-shirt Sequence 0.0741 0.0712 0.0644 0.0628 - 0.0636 - 0.0362 0.0386

TABLE 1: Statistical comparison of our method with other competing approaches. Quantitative evaluations for SMSR [16] and DV [3] are not
performed by us due to the unavailability of their code, and therefore, we tabulated their reconstruction error from their published work.

Table 1

Dataset MP DS SDG Ours

Face Seq1 280.32 360.87 121.0144 156.0122

Face Seq2 260.78 343.78 95.3093 105.7743

Face Seq3 2068.42 4032.71 894.2133 907.3231

Face Seq4 2125.67 4162.21 936.5386 978.5123

Paper 3212.22 4213.41 1577.36 1685.17

T-shirt 3713.22 4512.84 2189.95 2228.72
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Fig. 8: (a) Processing Time Comparison (b) Performance Comparison
on Noisy Trajectories

under different noise levels. Similar to the work of Lee et.al. [11],
we added the Gaussian noise to the input trajectories. The standard
deviation of the noise are adjusted as σg = λgmax{|W|} with λg
varying from 0.01 to 0.055. Fig.(8(b)) show the quantitative com-
parison of our approach with recent algorithm DS [17]. The graph
show the average 3D reconstruction error of all the four synthetic
face dataset [3]. The statistics indicate that our algorithms are
more resilient to noise than other competing methods. Specifically,
Algorithm 2 performs better with noisy data due to the low-
dimensional projection of the Grassmannians to perform grouping,
which inherently provides robust representation of subspace in
presence of noisy trajectories.
3. Performance with change in the number of singular values:
The integral value of ‘p’ in G (p,d) i.e., the number of top

(a) (b)

Fig. 9: Change in the average 3D reconstruction accuracy with
respect to number of singular vectors and singular values used.

singular vectors to represent Grassmannians and, corresponding
singular values to perform reconstruction can directly affect the
performance of our algorithm. Yet, it has been observed over
several experiments that we need relatively few singular values
and singular vectors —in comparison to the number of trajectories,
to recover dense 3D reconstruction of the deforming object.
Fig.(9(a)) and Fig. (9(b)) show the change in average 3D recon-
struction with the different values of ‘p’ for synthetic face dataset
[3]. The graph shows that for both Algorithm 1 and Algorithm
2, 10-15 singular values are good enough for Face Sequence 1-2
and, 25-30 singular values are sufficient for Face Sequence 3-4.
Note that these sequence have 28,880 trajectories and therefore,
to reconstruct each vectorial point can be severely expensive. In
constrast, our linear subspace representation can handle it easily.
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(a) (b) (c) (d)

Fig. 10: The measure of re-projection error constraint i.e ‖W−RS‖F as a function of rank on synthetic face dataset [3].

(a) (b) (c) (d)

Fig. 11: The measure of ground-truth shape fit i.e, the distance between the obtained shape and ground truth shape (‖SGT−S‖F) as a function
of rank on synthetic face dataset [3].

4. Analysis of Data-fit with Variation in the Rank: Inspired
by the recent work [63], we performed this test to analyse the
dependence of the algorithm on the output rank. Specifically,
we measure the datafit and ground-truth fit which is defined as
‖W− RS‖F and ‖SGT − S‖F respectively. This experiment revels
the competence of the algorithm to fit the trajectory/shape based
on the selection of the rank. The Fig.(10) and Fig.(11) clearly
indicates that sparse NRSfM algorithm [5] [2] fails to handle the
dense deforming shapes. Neither, reprojection error nor ground-
truth fit is maintained with increase in the ’K’ value (rank).
Additionally, dense NRSfM approach with only global constraint
[9] (MP) fails to capture the local deformation properly, hence,
datafit to the ground-truth fails to correlate with the re-projection
error with increase in the rank (K value). In contrast, our algorithm
has expected trend to both reprojection error and ground-truth
error with the variation in the rank. Both of our algorithms
have high correlation between the two measures. Note that MP
[9] [64] algorithm estimates both rotation and translation for
NRSfM problem, however, for consistency we did not consider
the translation component for plotting these graphs.
5. Ablation Test: In this paper, we proposed two optimization
algorithms that are composed of several constraints. To understand
the importance of each constraint, we performed an ablation test.
Algorithm 1 has both spatial and temporal subspace constraint,
whereas, Algorithm 2 has spatial subspace constraint along with
spatial neighbouring constraint. To perform this task for Algorithm
1, we observe the performance of our formulation under four
different setups: (a) without any spatio-temporal constraint (b)
with only spatial constraint (c) with only temporal constraint
(TP), and (d) with both the spatial-temporal constraint. Fig.(12(a))
show the variations in average 3D reconstruction errors under
these setups on four synthetic face sequence. The statistics clearly
illustrate the importance of both the constraints in our formulation.
Similarly, for Algorithm 2, we analysed the performance before
and after imposing the neighboring constraint. The result is shown

Table 1

Dataset No Spatial 
Temporal 
Constraint

Only Spatial 
Constraint

Only Temporal 
Constraint

Both Spatial 
Temporal 
Constraint

Face Sequence 1 0.084 0.052 0.050 0.044

Face Sequence 2 0.070 0.051 0.043 0.038

Face Sequence 3 0.056 0.034 0.037 0.028

Face Sequence 4 0.060 0.038 0.036 0.030
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Dataset Without 
Neighbouring 

Constraint 

With Neighbouring 
Constraint

Face Sequence 1 0.1083 0.0404

Face Sequence 2 0.0972 0.0392

Face Sequence 3 0.0913 0.0280

Face Sequence 4 0.0924 0.0327

A
ve

ra
ge

 3
D

 R
ec

on
st

ru
ct

io
n 

E
rr

or

0

0.028

0.055

0.083

0.11

Dataset

Face Sequence 1 Face Sequence 2 Face Sequence 3 Face Sequence 4

Without Neighbouring Constraint 
With Neighbouring Constraint

1

(b)

Fig. 12: (a)-(b) Ablation test results for Algorithm 1 and Algorithm
2 respectively.

in Fig.(12(b)) that demonstrates the importance of the imposed
constraint. Just to remind the readers that for Algorithm 2, we
did not consider the temporal constraint. We argued that temporal
information are generally not available in real-world cases.
6. Dependence of the algorithm 2 on variable d̃: Dimensionality
reduction to group the grassmann points is one of the critical
aspect of Algorithm 2. To determine the dimension to which we
should project for better results is a key-concern. We used well-
known procedure of cumulative energy of singular vectors to get
the value of d̃. Mathematically, let Ω be the set that stack all the
Grassmannians and σi be the ith singular value of ΩΩT, then

d̃= argmin
dopt

∑
dopt
i=1 σi

∑
d
i=1 σi

≥ τ (54)

where τ can vary from 0 to 1 and dopt (optimal dimension) is a
positive integer. We put τ = 0.97 for all our experiment. Fig.(13)
show the variations in the reconstruction error with the value of
τ for synthetic face dataset [3]. It is observed that for different
dataset the value of suitable d̃ is different. The point to note is
that if the reduced dimension is less than the intrinsic dimension,
the samples may lose important information for better grouping of
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Fig. 13: Variation in the 3D reconstruction accuracy w.r.t τ .

Grassmannians. For our task, in general, τ = 0.97 works well for
all the dataset.

8 PRACTICAL LIMITATIONS

Firstly, our method assumes fairly good dense 2D feature cor-
respondence is provided as input. Nonetheless, estimating robust
dense 2D feature correspondences for a deforming surface across
frames in itself is a very challenging problem to solve. The
main challenges come from the fact that the illumination of
the deforming object keeps changing over time. Consequently, a
passive approach to establish correspondences may lead to wrong
results. Secondly, our representation may fail to handle non-rigid
deformation such as stretching and squashing of an object. For
example: stretching a rubber sheet or deflating a balloon. Such
deformations are hard to handle due to substantial change in the
global structure of the shape —area/volume or projected object
size can differ considerably over frames. Lastly, object defor-
mation recorded under a distinct camera trajectory can provide
different results.

9 CONCLUSION AND FUTURE WORK

In this work, we introduced a new representation to solve the
problem of dense non-rigid structure from motion. Exploiting
both local and global deformation constraints, our algorithm uses
the new representation to make the idea of joint segmentation
and reconstruction scalable and therefore, is able to obtain the
3D structure of dense deforming surfaces with higher accuracy.
Employing a unified spatial-temporal idea to blend the information
from both shape and trajectory space, our algorithm demonstrated
leading performance on the benchmark datasets. Later, we ex-
tended our formulation to a more practical setting, where, temporal
shape information is not known a prior and input can be noisy.
We used the assumption that a group of neighboring trajectories
may span a similar linear subspace. To make our formulation
robust to noise, we project the manifold representation to lower
dimension for better clustering, thereby implicitly improving the
3D reconstruction. In particular, our algorithm shows notable
accuracy in the presence of noise and complex deformations,
where other methods may fail.

It has been observed that when the same object deformation is
recorded under different camera motion, the non-rigid structure
from motion algorithms behaves differently. In the future, we

plan to extend our algorithm to handle such a situation robustly.
Additionally, how far can we apply the new finding on smooth
motion assumption in our pipeline and, when the low-rank model
may fail is left as an extension to this work [40].
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