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Abstract

This work proposes an uncommon way to perceive and
estimate dense depth maps of a complex dynamic scene from
images. Recent geometric methods to solve dense depth
map of a complex dynamic scene from images is greatly
dependent on the reliable estimates of 3D motion param-
eters. To estimate and validate the accuracy of these rela-
tive motion parameters precisely from image feature corre-
spondences, specifically for a dynamic scene, is a challeng-
ing task. In this work, we propose an alternative approach
that bypasses the 3D motion estimation step and still pro-
vides compelling depth results. Given per-pixel optical flow
correspondences between two consecutive frames, and the
sparse depth prior of the reference frame, we show that, we
can effectively recover the dense depth map for the succes-
sive frames without solving for 3D motion parameters. Our
method assumes a piece-wise planar model of a dynamic
scene, which undergoes rigid transformation locally, and
as-rigid-as-possible transformation globally between two
successive frames. Under our assumptions, we can avoid
the explicit estimation of 3D rotation and translation to es-
timate scene depth. In essence, our unconventional formu-
lation provides a distinct framework to estimate the dense
depth map of a dynamic scene which is incremental and
free from 3D relative motion computation. Our proposed
method does not perform any object-level motion segmenta-
tion or any other high-level prior assumptions about the dy-
namic scene, as a result, it is applicable to a wide range of
scenarios. Experimental results on the benchmark datasets
show the competence of our approach for multiple frames.

1. Introduction

Estimating the dense depth map of a complex dynamic
scene from monocular images is an important and well-
studied problem in computer vision[35]. Recent develop-
ments to solve this problem have gained great attention
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Figure 1. Given consecutive monocular perspective frame (a), (b) of a
complex dynamic scene and the dense optical flow correspondences be-
tween them (d). Also, assume an approximate sparse depth prior for the
reference frame is provided as input (c), then, our algorithm under the
piecewise planar approximation of a dynamic scene gives per-pixel depth
estimate for the next frame (f) without solving for any motion parameters.
(e) ground-truth depth.

from several industries involved in augmented reality, au-
tonomous driving, movies, robotics [37, 34, 9, 29, 25, 26]
etc. Although recent research to solve this problem has pro-
vided some promising theory and results, its success de-
pends on the accurate estimates of 3D motion parameters
[23, 32, 38, 10].

To our knowledge, almost all the existing geometric so-
lutions to this problem have tried to fit the well-established
theory of rigid reconstruction in some way to solve the per-
pixel depth of a general dynamic scene [30, 23, 32]. Hence,
these extensions are intricate to execute and largely depends
on per-object or per-superpixel reliable motion estimates
[30, 23, 32, 1]. The main issue with the available geo-
metric frameworks is that, even if the depth for the first
frame or reference frame is known, we must solve for per-



superpixel or per-object 3D motion to obtain the depth for
the next frame. Consequently, the composition of their ob-
jective function fails to utilize the prior depth knowledge
and therefore, does not cascade such prior knowledge well
in their framework. In this work, we argue that in a dy-
namic scene, if the depth for the reference frame is known
then it’s not obligatory to estimate 3D motion parameters
to obtain the depth for the next frame. Hence, the rationale
behind relative motion estimation as an essential paradigm
for obtaining the depth of a complex dynamic scene seems
rather optional under the prior knowledge about the depth of
the reference frame and dense optical flow between frames.
To endorse our claim, we propose an alternative approach
which is easy to implement and allow us to get rid of the
intricacies related to the optimization on SE(3) manifold.

We posit that the recent geometric methods to solve this
task have been bounded by their inherent dependence on the
3D motion parameters. Consequently, we present a differ-
ent method to solve the dense depth estimation problem of a
dynamic scene. Inspired by the recent work [23], we model
the dynamic scene as a set of locally planar surfaces and
constrain the change in the scene to be as-rigid-as-possible
(ARAP). Recent work by Kumar et al. [23] uses local rigid-
ity graph structure to constrain the movement of each local
planar structure based on the homography [28] and its inter-
frame relative 3D motion. In contrast, we propose that the
global ARAP assumption of a dynamic scene may not need
explicit 3D motion parameters, and its definition just based
on the 3D Euclidean distance metric is a sufficient regular-
ization to supply the depth for the next frame. To this point,
one may ask “Why ARAP assumption for a dynamic scene?”

Consider a general real-world dynamic scene, the change
we observe in the scene between consecutive time frame is
not arbitrary, rather it is regular. Hence, if we observe a lo-
cal transformation closely, it changes rigidly, but the overall
transformation that the scene undergoes is non-rigid. There-
fore, to assume that the dynamic scene deforms as rigid as
possible seems quite convincing and practically works well
for most real-world dynamic scenes.

To realize our intuition, we first decompose the dy-
namic scene as a collection of moving planes. We con-
sider K-nearest neighbors per superpixel [1] (which is an
approximation of a surfel in the projective space) to de-
fine our ARAP model. For each superpixel, we choose
three points i.e., an anchor point (center of the plane),
and two other non-collinear points. Since the depth for
the reference frame is assumed to be known (for at least
3 non-collinear points per superpixel), we can estimate
per plane normal for the reference frame, but to estimate
per plane normal for the next frame, we need depth for
at least 3 non-collinear points per plane (see Figure 2)
§3. If per-pixel depth for the reference frame is known,
then the ARAP model can be extended to pixel level with-

out any loss of generality. The only reason for such dis-
crete planar approximation is the computational complexity.
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Figure 2. Notation
of points on a plane.
Three non-collinear
points per plane.

Our ARAP model defined over
planes does not take into account
the depth continuity along the
boundaries of the planes. We ad-
dress it in the subsequent step by
solving a depth continuity con-
straint optimization problem us-
ing the TRW-S algorithm [17] (see
Fig. 1 for a sample result). In this
work, we make the following contributions:

• We propose an approach to estimate the dense depth
map of a complex dynamic scene that circumvents ex-
plicit parameterization of the inter-frame 3D motion.
We specify as rigid as possible constraint for the depth
estimation by expressing length consistency constraint
directly on locally neighboring 3D points.
• Our algorithm under piece-wise planar and as rigid as

possible assumption appropriately encapsulates the be-
havior of a dynamic scene to estimate per-pixel depth.
• Although our algorithm takes two consecutive frames

into account, its incremental in nature and therefore,
it generalizes to multiple frames without any 3D mo-
tion parameters estimation. Experimental results for
two consecutive frames and multiple frames show the
validity of our claim §4.

2. Related Work and Our Motivation
Based on our findings, Li.H [27] introduced the first

practical method to directly estimate the 3D structure of a
scene without explicitly estimating motion. However, this
approach solves 3D structure of a rigid scene and the for-
mulation can handle few sparse points. Very recently, Ji
et al. [15] extended the Li.H [27] “motion-free” framework
to solve sparse 3D structure of a single non-rigidly mov-
ing object using multiple frames (M view, N point) [27].
In contrast, we propose a 3D motion free formulation that
provides a dense depth map of the entire dynamic scene
over frames by relying on global as-rigid-as-possible as-
sumption. Recently, numerous papers have been published
for the dense depth estimation of a dynamic scene from im-
ages. However, for brevity, in this paper, we limit our dis-
cussion to the recent papers that are motivated geometri-
cally to solve this problem, leading to the easy discourse of
our contributions.

In the recent past, two major class of work has been pro-
posed for estimating dense depth of a dynamic scene from
two consecutive monocular images [30, 23, 32]. However,
all of these methods depend on explicit 3D motion estima-
tion. These methods can broadly be classified as:



(a) Object-level motion segmentation approach: Ranftl et
al. [32] proposed a three-staged approach to solve dense
monocular depth estimation of a dynamic scene. Given the
dense optical flow field, the method first performs an object-
level motion segmentation using epipolar geometry [12].
Per-object motion segmentation is then used to perform
object-level 3D reconstruction using triangulation [12]. To
obtain a scene consistent depth map, ordering constraint and
smoothness constraints were employed over Quick-shift su-
perpixel [36] graph to deliver the final result.
(b) Object-level motion segmentation free approach: Ku-
mar et al. [23] argued that “in a general dynamic scene-
setting, the task of densely segmenting rigidly moving ob-
ject or parts are not trivial”. They proposed an over-
parametrized algorithm to solve this task without using
object-specific motion segmentation. The method dubbed
as “Superpixel Soup” showed that under two mild assump-
tions about the dynamic scene i.e., (a) the deformation of
the scene is locally rigid and globally as rigid as possible
and (b) the scene can be approximated by piece-wise planar
model, a scale consistent 3D reconstruction of a dynamic
scene can be obtained for both the frames with higher accu-
racy. Inspired by locally rigid assumption, recently, Noraky
et al. [30] proposed a method that uses the optical flow and
depth priors to estimate pose and 3D reconstruction of a de-
formable object.
Challenges with such geometric approaches: Although
these methods does provide a plausible direction to solve
this problem, its usage to real-world applications is rather
limited [32, 23, 30]. The major challenge with these ap-
proaches is to correctly estimate all conceivable 3D motion
parameters from image correspondences. The method pro-
posed by Ranftl et al. [32] estimates per-object relative rigid
motion which is not a sensible choice if the object them-
selves are deforming. On the other hand, methods such as
[23, 30, 24] estimates per superpixel/region relative rigid
motion which is sensitive to the size of the superpixels and
distance of the surfel from the camera.

The point we are trying to make is, given the depth for
the reference frame of a dynamic scene, can we correctly es-
timate the depth for the next frame using the aforementioned
approaches?. Maybe yes, but then, we have to again esti-
mate relative rigid motion for each object or superpixel and
so on and so forth. Inspired by the “as-rigid-as-possible”
(ARAP) intuition [23], in this work, we show that if we
know the depth for the reference frame and dense optical
flow correspondences between the consecutive frames, then
estimating relative 3D motion can be avoided. We can suc-
cessfully estimate the depth for the next frame by exploit-
ing as-rigid-as-possible global constraints. These depth es-
timates obtained using ARAP can further be refined using
boundary depth continuity constraint.

The next concern could be why we are trying to abort the

3D motion data to solve this problem? Firstly, as alluded to
above, such formulation can help avoid involved optimiza-
tion on SE(3) manifold. Secondly, it simplifies the under-
lying objective function which is relatively neat and easy to
solve. Thirdly, it provides a distinct view to think about the
behavior of a dynamic scene which generally pivots around
the confusion of structure motion and camera motion and
its relative inference from image data. Lastly, it provides
the flexibility to solve for depth at a pixel level rather than
at an object level or superpixel level which is hard to realize
using rotation and translation based approaches [30, 23, 32].
Nevertheless, to reduce the overall computation, we stick to
optimize our objective function at the superpixel level.

3. Piecewise Planar Scene Model
Inspired by the recent work on dense depth estimation of

a general dynamic scene [23], our model parameterizes the
scene as a collection of a piece-wise planar surface, where
each local plane is assumed to be moving over frames. The
global deformation of the entire scene is assumed to be as
rigid as possible. Moreover, we assign the center of each
plane (anchor point) to act as a representative for the entire
points within that plane (see Fig.3). In addition to the an-
chor point of each plane, we take two more points from the
same plane in such a way that these three points are non-
collinear (see Fig.4). This strategy is used to define our as
rigid as possible constraint between the reference frame and
next frame without using any 3D motion parameters. As the
depth for the reference frame and the optical flow between
the two successive frames is assumed to be known a priori,
each local planar region is described using only four param-
eters —normal and depth, instead of nine [23].

Our model first assigns each pixel of the reference frame
to a superpixel using SLIC algorithm [1] and each of these
superpixels then acts as a representative for its 3D plane
geometry. Since the global change of the dynamic scene
is assumed to be ARAP, the transformation that each plane
undergoes from the first frame to the next frame should be
as minimum as possible. The solution to global ARAP con-
straint supply depth for three points per plane in the next
frame, which is used to estimate the normal and depth of
the plane. The estimated depth and normal of each plane
are then used to calculate per-pixel depth in the next frame.

Although our algorithm is described for the classical
two-frame case, it is easy to extend to the multi-frame case.
The energy function we define below is solved in two steps:
First, we solve for the depth of each superpixel in the next
frame using as rigid as possible constraint. Due to the piece-
wise planar approximation of the scene, the overall solution
to the depth introduces discontinuity along the boundaries.
To remove the blocky artifacts —due to the discretization of
the scene, we smooth the obtained depth along the bound-
aries of all the estimated 3D plane in the second step us-
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Figure 3. (a) Piece-wise planar approximation of a dynamic scene. Each superpixel is assumed to be an approximation of a 3D plane in the projective
space. The center of the plane is shown with a filled circle (anchor point). (b) Decomposition of the scene into a local graph structure. Locally rigid graph
model with its k-nearest neighbor is shown for the reference frame and the next frame.

ing TRWS [17]. If the ARAP cost function is extended to
pixel-level then the boundary continuity constraint can be
avoided [13]. Nevertheless, over-segmentation of the scene
provides a good enough approximation of a dynamic scene
and is computationally easy to handle.

3.1. Model Overview

Notation: We refer two consecutive perspective image I, I′

as the reference frame and next frame respectively. Vectors
are represented by bold lowercase letters, for e.g. ‘x’ and
the matrices are represented by bold uppercase letters, for
e.g. ‘X’. The 1-norm, 2-norm of a vector is denoted as |.|1
and ‖.‖2 respectively.

3.2. As-Rigid-As-Possible (ARAP)

The idea of ARAP constraint is well known in practice
and has been widely used for shape modeling and shape
manipulation [14]. Recently Kumar et al. [23] exploited
this idea to estimate scale consistent dense 3D structure of
a dynamic scene. Our idea to use ARAP constraint in this
work is inspired by [23, 24].

Let (di, dj) and (d̃i, d̃j) be the distance of two neigh-
boring 3D points i, j from the reference coordinate in the
consecutive frames. Let (ui, vi, 1)T , (uj , vj , 1)T be its 2D
image coordinate in the reference frame and (ũi, ṽi, 1)T ,
(ũj , ṽj , 1)T be its image coordinate in the next frame re-
spectively. If ‘K’ denotes the intrinsic camera calibration
matrix then, ei = K−1(ui, vi, 1)T /‖K−1(ui, vi, 1)T ‖2,
ej = K−1(uj , vj , 1)T /‖K−1(uj , vj , 1)T ‖2 is the unit vec-
tor in the direction of the ith, jth 3D point respectively for
the reference frame. Similarly, the corresponding unit vec-
tors in the next frame is denoted with ẽi, ẽj (see Fig. 3(a)).
Using these notations, we define the ARAP constraint as:

Φarap =

3N∑
i=1

∑
j∈Nk

i

w
(1)
ij

∣∣∣ ‖diei − djej‖2︸ ︷︷ ︸
reference frame

−‖d̃iẽi − d̃j ẽj‖2︸ ︷︷ ︸
next frame

∣∣∣
1

(1)
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Figure 4. Intuition on orientation and shape regularization. Anchor point
and two non-collinear points are shown in red and green respectively. Dark
red line show the change in the next frame.

Here, N is the total number of planes used to approximate
the scene and N k

i is the ‘k’ neighboring planes local to ith

superpixel (see Fig. 3(b)). w(1)
ij is the exponential weight

fall off based on the image distance of the points. w(1)
ij pa-

rameter slowly breaks the rigidity constraint if the points
are far apart in the image space. This constraint encapsu-
lates our idea that the change in the distance of ith point
relative to its local neighbors in the next frame should be as
minimum as possible. Note that the summation goes over
3N rather than N due the reason discussed in Sec. §1

3.3. Orientation and Shape Regularization

Solving the ARAP constraint gives us the distance for
three non-collinear points per-plane in the next frame. We
use these distances and corresponding unit vectors to solve
for per plane normals in the next frame. Let these three
3D points corresponding to the ith superpixel in the next
frame be denoted as x̃ai = d̃ai ẽ

a
i , x̃1

i = d̃1i ẽ
1
i and x̃2

i = d̃2i ẽ
2
i

respectively. We estimate the normals in the next frame as:

ñi =
(d̃ai ẽ

a
i − d̃1i ẽ1i )× (d̃ai ẽ

a
i − d̃2i ẽ2i )

‖(d̃ai ẽai − d̃1i ẽ1i )× (d̃ai ẽ
a
i − d̃2i ẽ2i )‖2

. (2)

where superscript ‘a’ is used intentionally to denote the an-
chor point, which is assumed to be at the center of each



plane (see Fig. 4).
(a) Orientation smoothness constraint: Once we compute
the normal for each plane and 3D coordinates of the anchor
point (which lies on the plane), we estimate the depth of the
plane as follows:

ñTi x̃
a
i + d̃πa

i = 0 (3)

The computed depth of the plane is then used to solve for
per-pixel depth in the next frame —assuming that the cam-
era intrinsic matrix is known [23, 24, 12]. To encourage
smoothness in the change of angles between each adjacent
planes (see Fig. 4), we define orientation regularization as

Φorient
ij = λ1ρ1

(
1− |ñTi ñj |
‖ñi‖‖ñj‖

)
, (4)

where, λ1 is an empirical constant and ρ1(x) = min(|x|, σ1)
is the truncated l1 function with σ1 as a scalar parameter.
(b) Shape smoothness constraint: In our representation,
the dynamic scene model is approximated by the collection
of piecewise planar regions. Hence, the solution to per-pixel
depth obtained using Eq. (1) to Eq. (3) may provide discon-
tinuity along the boundaries of the planes in 3D (see Fig. 4).
To allow smoothness in the 3D coordinates for each adja-
cent planes along their region of separation, we define the
shape smoothness constraint as

Φshape =
∑

(i,j)∈Nb

w
(2)
ij ρ2(‖diei − djej‖22︸ ︷︷ ︸

reference frame

+ ‖d̃iẽi − d̃j ẽj‖22︸ ︷︷ ︸
next frame

).

(5)
The symbol‘Nb’ denotes the set of boundary pixels of ith

superpixel that are shared with the boundary pixel of other
superpixels. The weight w(2)

ij = exp(−β‖Ii − Ij‖2) takes
into account the color consistency of the plane along the
boundary points —weak continuity constraint [4]. Since all
the pixels within the same plane are assumed to share the
same model, smoothness for the pixels within the plane is
not essentially required. Similar to orientation regulariza-
tion, ρ2(x) = min(|x|, σ2) is the truncated l1 penalty func-
tion with σ2 as a scalar parameter. The overall optimization
steps of our method is provided in Algorithm (1).

4. Experimental Evaluation
We performed the experimental evaluation of our ap-

proach on two benchmark datasets, namely MPI Sintel [5]
and KITTI [9]. These two datasets provides complex and
realistic environment to test and compare dense depth esti-
mation algorithms. We compared the accuracy of our ap-
proach against two recent state-of-the-art methods [23, 32]
that use geometric approach to solve dynamic scene dense
depth estimation from monocular images. These compar-
isons are performed using three different dense optical flow
estimation algorithms, namely PWC-Net [33], FlowFields

Algorithm 1 : Dense Depth Estimation without using 3D motion

Input: (I, I′), optical flow(I, I′), K, depth for reference frame.
Output: Dense depth map for the next frame.
1: Over-segment the reference frame into N superpixels [1].
2: Assign anchor point for each superpixel and two other points
in the same plane such that these three points are non-collinear
(see Fig. 4).
3: Use K-NN algorithm over superpixels to get the K-nearest
neighbor index set.
4: Solve for per-superpixel depth in the next frame §3.2

Φarap → minimize
d̃i

subject to: d̃i > 0, |d̃i − di| < diσ(optional)

where, diσ is the variance in the depth.

(6)

Note: The second constraint provides a trust region for the fast
and proper convergence of a non-convex problem (Fig.10). Can
be thought of as max/min restriction to the scene deformation.
5: Estimate the normal for each plane in the next frame Eq. (2).

6: Estimate the depth for each plane Eq. (3).
7: Solve per pixel depth for the next frame using per plane
depth (d̃πa

i ), K, normal of the plane and its image coordinate.
For plane boundaries use 4-nearest neighbor pixel depth aver-
age.
8: Refine the depth of the next frame by minimizing Eq. (4),
Eq. (5) with respect to depth and normal [17] §3.3.

(Φorient + Φshape)→ minimize
d̃i,ñi

subject to: d̃i > 0, ‖ñi‖ = 1.
(7)

9: (For multi-frame) For generalizing the idea to multi-frame,
repeat the above steps by making the next frame as the reference
frame and new frame as the next frame.

[3] and Full Flow [6]. All the depth estimation accuracies
are reported using mean relative error (MRE) metric. Let
d̃ be the estimated depth and d̃gt be the ground-truth depth,

then MRE is defined as MRE = 1
P

∑P
i=1

|d̃i−d̃gti |
d̃gti

, where
‘P ’ denotes the total number of points. The statistical re-
sults for DMDE [32] and Superpixel Soup [23, 24] are taken
from their published work for comparison.
Implementation Details: We over-segment the reference
frame into 1000-1200 superpixels using SLIC algorithm[1]
to approximate the scene. We use a fixed value of diσ =
1 and N k

i = 20-25 for all the experiments. For computing
the dense optical flow correspondences between images we
used PWC-Net[33], FlowFields[3] and Full Flow[6] algo-
rithm. The depth for the reference image is initialized us-
ing Mono-Depth[11] model on the KITTI dataset and using
S.Soup algorithm [23] on the MPI-Sintel dataset. The pro-
posed optimization is solved in two stages, firstly Eq.(6) is
optimized using SQP[31] algorithm and Eq.(7) is optimized
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Figure 5. Depth results on the MPI Sintel dataset[5] for the next frame
under two frame experimental setting. 2nd and 3rd row show our depth
results and ground-truth depth results respectively.

OF↓ / Methods DMDE[32] S.Soup[24] Ours
PWC Net [33] - - 0.1848
Flow Fields [3] 0.2970 0.1643 0.1943
Full Flow [6] - 0.1933 0.2144

Table 1. Comparison of dense depth estimation methods under two con-
secutive frame setting against the state-of-the-art approaches on the MPI
Sintel dataset [5]. For consistency, the evaluations are performed using
mean relative error metric (MRE).

using TRW-S[17] algorithm. The choice of the optimizer is
purely empirical and the user may choose other optimiza-
tion algorithms to solve our cost function. We implemented
our algorithm on a commodity desktop computer using C++
/MATLAB which takes 10-12 minutes of processing time.

The implementation is performed under two different ex-
perimental settings. In the first setting, given the sparse (i.e.
for three non-collinear points per superpixel) depth estimate
of a dynamic scene for the reference frame, we estimate the
per-pixel depth for the next frame. In the second experi-
mental setting, we generalize this idea of two frame depth
estimation to multiple frames by computing the depth es-
timates over frames. For the ease of understanding, MAT-
LAB codes are provided in the appendix to show the work-
ing of ARAP idea on synthetic dynamic scene examples.

Results on MPI Sintel Dataset: This dataset gives an
ideal setting to evaluate depth estimation algorithms for
complex dynamic scenes. It contains image sequences with
intricate motions and severe illumination change. More-
over, the large number of non-planar scenes and non-rigid
deformations makes it a suitable choice to test the piece-
wise planar assumption. We selected seven set of scenes
namely alley 1, alley 2, ambush 5, bandage 1, bandage 2,
market 2 and temple 2 from the clean category of this
dataset to test our method.
(a) Two-frame results: While testing our algorithm for the
two-frame case, the reference frame depth is initialized us-
ing recently proposed superpixel-soup algorithm [23]. The
optical flow between the frames is obtained using methods
such as PWC-Net [33], Flow Fields [3] and Full Flow [6].
Table (1) shows the statistical performance comparison of
our method against other geometric approaches. The statis-

(a) Image (MPI Dataset) (b) Dense Depth Estimate over frames

Figure 6. Results on MPI Sintel dataset [5] under multi-frame experimen-
tal setting. (a) Image frame for which the depth is initialized. (b) Depth
estimation results using our method over frames.

tics clearly show that our alternative way performs equally
well without using any 3D rotation or translation. Qualita-
tive results within this setting are shown in Fig. 5.
(b) Multi-frame results: In the multi-frame setting, only the
depth for the first frame is initialized. The result obtained
for the next frame is then used for the upcoming frames to
estimate its dense depth map. Since we are dealing with the
dynamic scene, the environment changes slowly and there-
fore, the error starts to accumulate over frames. Fig. 9(a)
reflects this propagation of error over frames. Qualitative
results over multiple frames are shown in Fig. 6.

Results on KITTI Dataset: The KITTI dataset has
emerged as a standard benchmark dataset to evaluate the
performance of dense depth estimation algorithms. It con-
tains images of outdoor driving scenes with different light-
ing conditions and large camera motion. We tested our algo-
rithm on both KITTI raw data and KITTI 2015 benchmark.
For KITTI dataset, we used Monodepth method [11] to ini-
tialize the reference frame depth. Dense optical flow cor-
respondences are obtained using the same aforementioned
methods. For consistency, the depth estimation error mea-
surement on KITTI dataset follows the same order of 50
meters as presented in [11] work.
(a) Two-frame results: KITTI 2015 scene flow dataset pro-
vides two consecutive frame pair of a dynamic scene to test
algorithms. Table (2) provides the depth estimation results
of our algorithm in comparison to other competing meth-
ods. Here, our results are a bit better using PWC-Net [33]
optical flow and Monodepth [11] depth initialization. Fig. 7
shows the qualitative results using our approach in compar-
ison to the Monodepth [11] for the next frame.
(b) Multi-frame results: To test the performance of our al-
gorithm on multi-frame KITTI dataset, we used KITTI raw
dataset specifically from the city, residential and road cate-
gory. The depth for only the first frame is initialized using
Monodepth [11] and then we estimate the depth for the up-
coming frames. Due to very large displacement in the scene
per frame (>150) pixels, the rate of change of error accu-
mulation curve for KITTI dataset (Fig. 9(b)) is a bit steeper
than MPI Sintel. Fig. 8 and Fig. 9(b) show the qualitative
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Figure 7. Results on KITTI 2015 benchmark dataset under two frame
experimental setting. 3rd row: Monodepth [11] results on the same se-
quence for the next frame for qualitative comparison.

OF↓ / Methods DMDE[32] S.Soup[23] Ours
PWC Net [33] - - 0.1182
Flow Fields [3] 0.1480 0.1254 0.1372
Full Flow [6] - 0.1437 0.1665

Table 2. Comparison of dense depth estimation under two consecutive
frame setting against the state-of-the-art approaches on KITTI dataset [5].
For consistency, the evaluations are performed using mean relative error
metric (MRE). The results are better due to monodepth initialization for
the reference frame.

results and depth error accumulation over frames on KITTI
raw dataset respectively.

Comparison: We compared the performance of our al-
gorithm against some of the recent dynamic scene 3D re-
construction and depth estimation methods. Our compar-
isons are done against the methods that are, in general,
motivated geometrically to solve this problem. Table (3)
shows an overall comparison of our method with recent ap-
proaches. We observed that our method works reasonably
well under piece-wise rigid and planar model without solv-
ing for 3D motion parameters (see Table 3). Note that all
the other methods perform object-level or region level mo-
tion estimation to report the result. In contrast, our method
can handle dynamic scene with independent moving objects
over multiple frames without explicitly estimating 3D mo-
tion. Although S.Soup [23, 24] performs better than our
approach, however, such framework struggles in multiple
frame 3D reconstruction. Also, estimating per superpixel
motion is challenging for such framework. Hence, our ap-
proach has some clear advantage of estimating depth when
3D motion estimates are not correct for a dynamic scene.

Statistical Analysis: Besides standard experiments un-
der the aforementioned variable initialization, we conducted
other experiments to better understand the behavior of the
proposed idea. We used synthetic examples shown in
Fig. 11 to provide better interpretation of the algorithmic
behaviour. Matlab codes with synthetic examples are also
provided in the supplementary material for reference.
(a) Effect of the variable N : The number of superpixels to
approximate the dynamic scene can affect the performance
of our method. A small number of superpixel can provide

(a) Image (KITTI) (b) Dense Depth Estimate over frames

Figure 8. Results on KITTI raw dataset under multi-frame experimental
setup. (a) Reference image for which the depth is initialized using Mon-
odepth [11] (b) Dense depth results over frames using our algorithm.

Algo.

Data

DT

(SF)

GLRT

(MF)

BMM

(MF)

PTA

(MF)

DMDE

(TF)

S.Soup

(TF)

Ours

(TF)

MPI-S 0.483 0.410 0.312 0.317 0.297 0.164 0.194

KITTI 0.270 0.411 0.390 0.409 0.148 0.125 0.137

Table 3. Statistical comparison of our approach with two-frame and multi-
frame approaches on different benchmark dataset. For S.Soup and DMDE
[23, 32, 24] we used their previously reported results as their implemen-
tations are not publicly available. SF, MF, TF refers to single frame,
multi-frame and two-frame based approach respectively. The reference are
DT[16], GLRT[8], BMM[7], PTA[2], DMDE [32], S.Soup [23, 24]. For
consistency, these comparisons are done using Flow-Fields optical flow [3]

poor depth result, whereas a very large number of super-
pixel can increase the computation time. Fig. 9(c) shows
the change in the accuracy of depth estimation with respect
to the change in the number of superpixels. The curve sug-
gests that for KITTI and MPI Sintel 1000-1200 superpixel
provides a reasonable approximation to the dynamic scenes.
(b) Effect of the variable N k

i : The number of K-nearest
neighbors to define the local rigidity graph can have a di-
rect effect on the performance of the algorithm. Although
N k
i =20 − 25 works well for the tested benchmarks, it is

purely an empirical parameter and can be different for a
distinct dynamic scene. Fig. 9(d) demonstrates the perfor-
mance of the algorithm with the change in the values ofN k

i .
(c) Performance of the algorithm under noisy initialization:
This experiment is conducted to study the sensitivity of the
method to noisy depth initialization. Fig. 10(a) shows the
change in the 3D reconstruction accuracy with the variation
in the level of noise from 1% to 9%. We introduced the
Gaussian noise using randn() MATLAB function and the
results are documented for the example shown in Fig. 11
after repeating the experiment for 10 times and taking its
average values. We observe that our algorithm can provide
arguable results when the noise level is high.
(d) Performance of the algorithm under restricted isometry
constraint with Φarap objective function: While minimiz-
ing the ARAP objective function under the |d̃i − di| < diσ
constraint, we restrict the convergence trust region of the
optimization. This constraint makes the algorithm works
extremely well —both in timing and accuracy, if an ap-
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Figure 9. (a)-(b) Accumulation of error over frames for MPI and KITTI dataset respectively. (c) Change in the depth estimation accuracy w.r.t number of
superpixel. (d) Variation in the depth accuracy as a function of k-nearest neighbor (N k

i )
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Figure 10. (a) Depth results for the next frame with different levels of Gaussian noise in the reference frame coordinate initialization. (b) Variation in
the performance with the change in the diσ values for synthetic example. (c) Convergence curve of the ARAP objective function (light green). Quick
convergence with comparable accuracy on the same example can be achieved by using restricted isometric constraint in just 60-70 iteration (dark-green).

 Background Non-Rigidly deforming object

Background Rigid Motion

(Rb, Tb)

(a) Reference Image (b) Next Image

Non-Rigid 
Deformation

Figure 11. Synthetic example to conduct in-depth analysis of our ARAP
cost function. Two objects are deforming independently over a rigid back-
ground motion. The objects are at a finite separation from the background.
For numerical details on this example kindly go through suppl. material.

proximate knowledge about the deformation that the scene
may undergo is known a priori. Fig. 10(b) show the 3D re-
construction accuracy as a function of diσ for the example
shown in Fig. 11. Clearly, if we anticipate the scene trans-
formation a priori, we can get high accuracy in less time.
See Fig. 10(c) which show the quick convergence by using
this constraint under a suitable range of diσ . On contrary, if
we relax it too much the error can increase (see Fig. 11 for
diσ = 4). The possible reason for this that, by relaxing too
much our rigidity assumption may not hold anymore.
(e) Nature of convergence of our ARAP optimization:
1) Without restricted isometry constraint: As rigid as possi-
ble minimization Φarap under the constraint d̃i > 0 is alone a
good enough constraint to provide acceptable results. How-
ever, it may take a considerable number of iterations to do
so. Fig. 10(c) shows the convergence curve (light-green).

2) With restricted isometry constraint: Employing an ap-
proximate bound on the deformation that the scene may un-
dergo in the next time instance can help fast convergence
with similar accuracy. Fig. 10(c) shows that comparable ac-
curacy can be achieved in just 60-70 iterations.1

5. Conclusion
The problem of estimating per-pixel depth of a dynamic

scene, where the complex motions are prevalent is a chal-
lenging task to solve. Quite naturally, previous methods
rely on standard relative 3D motion estimation techniques
to solve this problem, which in fact is a non-trivial task for
a non-rigid scene. In contrast, this paper introduces an alter-
native way to perceive this problem, which essentially triv-
ializes the notion of 3D motion estimation as a compulsory
step. Most of the real-world dynamic scenes if observed
closely, it can be inferred that it locally transforms rigidly
and globally as rigid as possible. Using such acute observa-
tion, we propose an algorithm to solve dense depth estima-
tion task using piece-wise planar and locally rigid approxi-
mation of a scene without explicitly solving for 3D motion.
Results on the benchmark datasets are provided to validate
the competence of our idea. We hope that our idea may
open up a new direction for 3D vision research.

Note: For details on limitations, comprehensive discussion and Maltab
code, kindly go through the supplementary material.

1Note: Per iteration cost without isometry constraint is: 3.6s, whereas,
with isometry constrain it is 1.72s, when tested on MPI Sintel dataset.
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