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Abstract

In this supplementary material, we first discuss the potential limitation of our algorithm. Secondly, we provide the MAT-
LAB simulation code on two synthetic examples. These examples explains and show the utility of as rigid as possible con-
straint to recover the 3D points in a dynamic scene setting without estimating motion. Additionally, we provide few statistical
experiment results about the behavior of our algorithm under noisy initialization and different diσ values (if the second con-
straint is used with Φarap). Although some of the evaluations are also provided in the main paper, we provide it again with
numerical examples for completeness and easy understanding.

1. Limitation and Discussion
Even though our method works well for diverse dynamic scenes, there are still a few challenges associated with the formu-
lation. Firstly, very noisy depth initialization for the reference frame can provide unsettling results. Secondly, our method
is challenged by the instant arrival or removal of the dynamic subjects in the scene, and in such cases, it may need re-
initialization of the depth. Lastly, well-known limitations such as occlusion and temporal consistency, especially around the
regions close to the boundary of the images can also affect the accuracy of our algorithm.
Discussion: In defense, we would like to state that motion based methods to structure from motion is also prone to noisy
data [2, 1]. Algorithms like motion averaging [3], M-estimators and random sampling [13] are quite often used to rectify the
solution.
(a) What do we gain or lose by our approach?
Estimating all kinds of conceivable motion in a complex dynamic scene from images is a challenging task, in that respect,
our method provides an alternative way to achieve per pixel depth without estimating any 3D motion. However, in achieving
this we are allowing the gauge freedom between the frames (temporal relations in 3D over frames).
(b) Depth results has some blocky effects? Few blocky artifacts can be observed in the depth results due to discrete piece-wise
planar decomposition of the scene. Although we smooth the solution using TRW-S [4], the number of particles for each move
is taken as 10 to reduce the convergence time, hence, some artifacts can be observed.
(c) Limitations of as rigid as possible assumption?
In a general dynamic scene, its quite intuitive to assume that the changes in the scene between successive frames is gradual.
Therefore, to have an assumption that the scene undergoes as rigid as possible transformation in consecutive frames holds in
general. However, there are situations were such an assumption may not hold and the solution to depth estimation problem
under ARAP regularisation can provide unreasonable results. Couple of the such examples are: (a) When the displacement of
objects between frames are large. (b) When the subject is shrinking or expanding over frames such as balloons, rubber-sheet
etc.
(d) Why two staged optimization to solve the problem?
If ARAP optimization function is defined on per pixel level then the second step of our algorithm can be avoided. Never-
theless, doing so will ramp up the convergence time which is tough to realise on commodity desktop machine. Therefore, to
realize the results in a reasonable computation time, we first perform ARAP optimization at superpixel level and then smooth
the solution using message passing algorithm [4].
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Figure 1: (a) Experimental setup for the first experiment (b) 3D reconstruction for the next frame after optimization (c) The 3D recon-
struction error variations against the number of nearest neighbor in the experiment (topK variable in the code).

2. Synthetic Experiment Code and Explanation
We provide the code showing the utility of as rigid as possible constraint on two synthetic experimental setting of a

dynamic scene. In these experiments, the background and the objects are shown in red and blue color respectively. The
background undergoes a rigid motion and the object undergoes a non-rigid deformation in the scene. Given the depth of
the reference frame and the image correspondences of the feature points, we can estimate the 3D reconstruction for both the
foreground and the background in the next frame just by using the ARAP constraint without using any 3D motion parameters.

2.1. Experiment (1)

1. Scene Setup: A background and an object in the reference frame. The background undergoes a rigid motion and the
single object deforms non-rigidly in the next frame (see Figure 1).

2. Input: 2D image feature correspondences, intrinsic camera parameters(K), depth of the points in the reference frame.

3. Output: 3D coordinates of the entire scene for the next frame.

(1) firstExample.m Main file.
%% Evaluation of concept on sythetic dataset.
% 1. Given the 3D points for the background and the deforming object (foreground) for the reference frame.
% 2. Also, you are provided with camera intrinsic calibration matrix(K), 2D image correspondance between reference frame
and next frame
% 3. Situation: The background is undergoing a rigid motion and the object is deforming non-rigidly.
%% Problem: % Get the 3D reconstruction of this dynamic scene for the next time frame without solving for motion.
%% 1. Generate a synthetic dataset for the reference frame
%Create a synthetic situation of the problem.
%generate 3D for the reference frame
%Background coordinate
ref Xb = [1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5; 1, 2, 3, 4, 5];
ref Yb = [1, 1, 1, 1, 1; 2, 2, 2, 2, 2; 3, 3, 3, 3, 3; 4, 4, 4, 4, 4; 5, 5, 5, 5, 5];
ref Zb = 2 ∗ ones(5, 5);
%Object coordinate
ref Xo = [2.5, 3.5, 4.5; 2.5, 3.5, 4.5; 2.5, 3.5, 4.5];
ref Yo = [2.5, 2.5, 2.5; 3.5, 3.5, 3.5; 5.0, 5.0, 5.0];
ref Zo = 3 ∗ ones(3, 3);
%Arrange in the matrix form
ref Xb = ref Xb’; ref Yb = ref Yb’; ref Zb = ref Zb’;



ref Xo = ref Xo’; ref Yo = ref Yo’; ref Zo = ref Zo’;
ref X = [ref Xb(:)’, ref Xo(:)’];
ref Y = [ref Yb(:)’, ref Yo(:)’];
ref Z = [ref Zb(:)’, ref Zo(:)’];
%% 2. Generate the synthetic dataset for the next frame
%give some rigid motion to the background
angle = deg2rad(3);
R = [cos(angle), 0, sin(angle); 0, 1, 0; -sin(angle), 0, cos(angle)];
t = [0.2, 0.2, 0.2]’;
next b = R*[ref Xb(:)’; ref Yb(:)’; ref Zb(:)’] + repmat(t, [1, 25]);
next Xb = next b(1, :); next Yb = next b(2, :); next Zb = next b(3, :);
%give some inconsistent changes to the object
next Xo = [2.6, 3.7, 4.7; 2.8, 3.6, 4.5; 2.5, 3.5, 4.6];
next Yo = [2.6, 2.7, 2.75; 3.4, 3.45, 3.5; 5.05, 5.10, 5.15];
next Zo = [2.9, 2.9, 2.9; 2.9, 2.9, 2.9; 2.9, 2.9, 2.9];
%arrange in the matrix form
next Xo = next Xo’; next Yo = next Yo’; next Zo = next Zo’;
next X = [next Xb, next Xo(:)’];
next Y = [next Yb, next Yo(:)’];
next Z = [next Zb, next Zo(:)’];
%% 3. Generate synthetic image for the reference frame and the next frame.
%some K matrix
fx = 100; fy = 100; cx = 240; cy = 320;
K = [fx, 0, cx; 0, fy, cy; 0, 0, 1];
%image point for the reference image
ref img = K*[ref X;ref Y; ref Z];
ref img = ref img./repmat(ref img(3, :), [3, 1]);
%image point for the next image
next img = K*[next X; next Y; next Z];
next img = next img./repmat(next img(3, :), [3, 1]);
%plot the image points
figure, plot(ref img(1, :), ref img(2, :), ’k.’); hold on;
plot(ref img(1, 26:34), ref img(2, 26:34), ’ro’); title(’Reference Image’);
figure, plot(next img(1, :), next img(2, :), ’k.’); hold on;
plot(next img(1, 26:34), next img(2, 26:34), ’ro’); title(’Next Image’);
%% 4. Define the neighbors based on the reference image distance
%total number of anchor node.
N = 34; %K-NN to consider
topK = 15; %vary form 1 to N
%get the index of the neighbors
[persuperpixelKNNid, persuperpixelw1k] = givemeKNN(ref img, N, topK); %function call 1
%% 5. Use as rigid as possible optimization routine
%(Optional: You may provide explicit lower and upper bound for better convergence of a non-convex problem)
%(For large scale problems such bounds can be handy)
%dvariance = ones(N, 1);
%lb = ref Z’ - dvariance; %lower bound on the variables
%ub = ref Z’ + dvariance; %upper bound on the variables
%general upper and lower bound
lb = zeros(N, 1); ub = []; Aeq = []; Beq = []; A = []; B = []; d0 = ones(N, 1)/N;
%optimization options
%for MATLAB 2017 version uncomment
%options = optimoptions(’fmincon’, ’Algorithm’, ’sqp’, ’Display’, ’iter-detailed’, ’MaxIter’, 1000, ’MaxFunctionEvalua-
tions’, 300000, ’PlotFcns’, @optimplotfval);



%for MATLAB 2015 version
options = optimoptions(‘fmincon’, ‘Algorithm’, ‘sqp’, ‘Display’, ‘iter-detailed’, ‘MaxIter’, 1000, ‘MaxFunEvals’, 300000,
‘PlotFcns’, @optimplotfval);
ref3D = [ref X; ref Y; ref Z];
next3D = inv(K)*next img;
disp(’Optimizing....’);
[depthVal, cost] = fmincon(@(d)objectiveFunctionARAP(d, ref3D, next3D, persuperpixelKNNid, persuperpixelw1k), d0, A,
B, Aeq, Beq, lb, ub,[], options); %function call 2
%% 6. Get the output depth and estimate the 3D.
output3D = zeros(3, N);
for i = 1:N

output3D(:, i) = depthVal(i)*next3D(:, i);
end
%% 7. Plot the result
figure,
plot3(next X(:), next Y(:), next Z(:), ’r.’); hold on;
plot3(output3D(1, :), output3D(2, :), output3D(3, :), ’go’);
axis([0, 10, 0, 10, 0, 10]); grid on;
title(‘3D reconstruction for the next frame’);
legend(‘Ground-Truth’, ‘Reconstructed Points’)
%% 8. Perform error estimation (Relative Error)
gt 3D = [next X(:)’; next Y(:)’; next Z(:)’];
es 3D = [output3D(1, :); output3D(2, :); output3D(3, :)];
error = norm(es 3D - gt 3D, ‘fro’)/norm(gt 3D, ‘fro’);
fprintf(‘Relative Error = %f \n’, error);

(2) givemeKNN.m First function file (K-nearest neighboring index)
function [persuperpixelKNNid, persuperpixelw1k] = givemeKNN(ref img, N, topK)
persuperpixelKNNid = cell(1, N); persuperpixelw1k = cell(1, N); distanceMat = zeros(N, N);
for i = 1:N

x ai = ref img(1:2, i);
for j = 1:N

x ak = ref img(1:2, j);
distanceMat(i, j) = sqrt((x ai(1, 1) - x ak(1, 1))ˆ2 + (x ai(2, 1) - x ak(2, 1))ˆ2);

end
end
[sortDistance, index] = sort(distanceMat, 2);
betad = 1;
for i = 1:N

persuperpixelKNNidi.knnid = index(i, 2:topK); %1 id is always the same anchor (distance to itself = 0);
persuperpixelw1ki.w1k = exp(-betad*sortDistance(i, 2:topK));

end
end

(3) objectiveFunctionARAP.m Second function file (As rigid as possible cost function definition).
function cost = objectiveFunctionARAP(d, ref3D, next3D, persuperpixelKNNid, persuperpixelw1k)
N = length(persuperpixelKNNid);
cost = 0;
for i = 1:N

knnid = persuperpixelKNNidi.knnid;
di = d(i);
Xi = ref3D(:, i);
Xip = next3D(:, i);



for j = 1:length(knnid)
dj = d(knnid(1, j));
Xj = ref3D(:, knnid(1, j));
Xjp = next3D(:, knnid(1, j));
cost = cost + abs(norm(Xi-Xj)-norm(di*Xip - dj*Xjp));

end
end
end

2.2. Experiment (2)

1. Scene Setup: A background with two objects in the reference frame scene. The background undergoes a rigid motion
and both the objects deforms non-rigidly in the next frame (see Figure 2).

2. Input: 2D image feature correspondences, intrinsic camera parameters(K), depth of the points in the reference frame.

3. Output: 3D coordinates of the entire scene for the next frame.

secondExample.m Main file.
% 1. Given the 3D points for the background and the two foreground object for the reference frame.
% 2. Also, you are provided with 2D image correspondance between reference frame and next frame.
% The 3D background is undergoing rigid motion and the two foreground are undergoing non-rigid deformation.
% 3. use ARAP constraint to estimate the 3D output for the next frame.

%% 1. Generate a synthetic dataset for the reference frame

%3D in the reference frame.
ref Xb = repmat(1 : 10, [10, 1]);
ref Yb = ones(10, 10). ∗ repmat((1 : 10)′, [1, 10]);
ref Zb = 2 ∗ ones(10, 10);

ref Xo1 = [2.5, 3.5, 4.5; 2.5, 3.5, 4.5; 2.5, 3.5, 4.5];
ref Yo1 = [2.5, 2.5, 2.5; 3.5, 3.5, 3.5; 5.0, 5.0, 5.0];
ref Zo1 = 3 ∗ ones(3, 3);

ref Xo2 = [7.5, 8.5, 9.5; 7.5, 8.5, 9.5; 7.5, 8.5, 9.5];
ref Yo2 = [5.5, 5.5, 5.5; 6.5, 6.5, 6.5; 8.0, 8.0, 8.0];
ref Zo2 = 4 ∗ ones(3, 3);

% figure, plot3(ref Xb(:), ref Yb(:), ref Zb(:), ’r*’); hold on;
% plot3(ref Xo1(:), ref Yo1(:), ref Zo1(:), ’g.’); hold on;
% plot3(ref Xo2(:), ref Yo2(:), ref Zo2(:), ’g.’); hold on;

ref Xb = ref Xb’; ref Yb = ref Yb’; ref Zb = ref Zb’;
ref Xo1 = ref Xo1’; ref Yo1 = ref Yo1’; ref Zo1 = ref Zo1’;
ref Xo2 = ref Xo2’; ref Yo2 = ref Yo2’; ref Zo2 = ref Zo2’;

ref X = [ref Xb(:)’, ref Xo1(:)’, ref Xo2(:)’];
ref Y = [ref Yb(:)’, ref Yo1(:)’, ref Yo2(:)’];
ref Z = [ref Zb(:)’, ref Zo1(:)’, ref Zo2(:)’];
plot3(ref X(:), ref Y(:), ref Z(:), ‘ro’); hold on;

%% 2. Generate the synthetic dataset for next frame
angle = deg2rad(3);
R = [cos(angle), 0, sin(angle); 0, 1, 0; -sin(angle), 0, cos(angle)];
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Figure 2: (a) Experimental setup for the second experiment (b) 3D reconstruction of the points in the next frame after optimization (c)
The 3D reconstruction error variations against the number of nearest neighbor in the experiment (topK variable in the code)

t = [0.2, 0.2, 0.2]’;
next b = R*[ref Xb(:)’; ref Yb(:)’; ref Zb(:)’] + repmat(t, [1, 100]);

next Xb = next b(1, :);
next Yb = next b(2, :);
next Zb = next b(3, :);

next Xo1 = [2.6, 3.7, 4.7; 2.8, 3.6, 4.5; 2.5, 3.5, 4.6];
next Yo1 = [2.6, 2.7, 2.75; 3.4, 3.45, 3.5; 5.05, 5.10, 5.15];
next Zo1 = [2.9, 2.9, 2.9; 2.9, 2.9, 2.9; 2.9, 2.9, 2.9];

next Xo2 = [7.6, 8.7, 9.7; 7.8, 8.6, 9.5; 7.5, 8.5, 9.6];
next Yo2 = [5.6, 5.7, 5.75; 6.4, 6.45, 6.5; 8.05, 8.10, 8.15];
next Zo2 = [3.9, 3.9, 3.9; 3.9, 3.9, 3.9; 3.9, 3.9, 3.9];

% figure, hold on;
% plot3(next Xb(:), next Yb(:), next Zb(:), ’ro’); hold on;
% plot3(next Xo1(:), next Yo1(:), next Zo1(:), ’go’); hold on;
% plot3(next Xo2(:), next Yo2(:), next Zo2(:), ’go’); hold on;

next Xo1 = next Xo1’; next Yo1 = next Yo1’; next Zo1 = next Zo1’;
next Xo2 = next Xo2’; next Yo2 = next Yo2’; next Zo2 = next Zo2’;

next X = [next Xb, next Xo1(:)’, next Xo2(:)’];
next Y = [next Yb, next Yo1(:)’, next Yo2(:)’];
next Z = [next Zb, next Zo1(:)’, next Zo2(:)’];
%% 3. generate a synthetic image for the reference frame and next frame.
%some K matrix
fx = 100; fy = 100; cx = 240; cy = 320;
K = [fx, 0, cx; 0, fy, cy; 0, 0, 1];

% image point for the reference image
ref img = K*[ref X;ref Y; ref Z];
ref img = ref img./repmat(ref img(3, :), [3, 1]);

% image point for the next image
next img = K*[next X; next Y; next Z];



next img = next img./repmat(next img(3, :), [3, 1]);

%plot the image points
figure, plot(ref img(1, :), ref img(2, :), ’k.’); hold on;
plot(ref img(1, 101:118), ref img(2, 101:118), ’ro’);

figure, plot(next img(1, :), next img(2, :), ’k.’); hold on;
plot(next img(1, 101:118), next img(2, 101:118), ’ro’);

%% 4. Now define the neighbors based on the reference image distance
N = 118; %total number of anchor node.
topK = 22; %vary form 1 to N
[persuperpixelKNNid, persuperpixelw1k] = givemeKNNforConcept(ref img, N, topK);

%% 5. Perform ARAP optimization
%dvariance = ones(N, 1);
%lb = ref Z’ - dvariance; % lower bound on the variables, this works
%ub = ref Z’ + dvariance; % upper bound on the variables
lb = zeros(N, 1); %this also works
ub = []; %this also works
Aeq = []; % equality constraint
Beq = [];
A = []; % inequality constraint
B = [];

d0 = ones(N, 1)/N; %variable initialization

%optimization options
options = optimoptions(‘fmincon’, ‘Algorithm’, ‘sqp’, ‘Display’, ‘iter-detailed’, ‘MaxIter’, 400, ‘MaxFunEvals’, 300000,
‘PlotFcns’, @optimplotfval);
ref3D = [ref X; ref Y; ref Z];
next3D = inv(K)*next img;

disp(’Optim’);
[depthVal, cost] = fmincon(@(d)objectiveFunctionConceptARAP(d, ref3D, next3D, persuperpixelKNNid, persuperpixelw1k),
d0, A, B, Aeq, Beq, lb, ub, [], options);

output3D = zeros(3, N);
for i = 1:N

output3D(:, i) = depthVal(i)*next3D(:, i);
end

figure,
plot3(next X(:), next Y(:), next Z(:), ’r.’); hold on;
plot3(output3D(1, :), output3D(2, :), output3D(3, :), ’go’);

%% error estimation
gt 3D = [next X(:)’; next Y(:)’; next Z(:)’];
es 3D = [output3D(1, :); output3D(2, :); output3D(3, :)];
error = norm(es 3D - gt 3D, ’fro’)/norm(gt 3D, ‘fro’);
fprintf(‘Relative Error = %f \n’, error)
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Figure 3: (a) 3D reconstruction results for the next frame with different levels of Gaussian noise in the reference frame coordinate
initialization. The curve is generated using the second synthetic experiment with K-NN as 117 (topK = 117) i.e. fully connected graph. (b)
Variation in the performance with the change in the diσ values for synthetic example 2.

3. Statistical Evaluation
We performed few more experiments to better understand the behavior of the algorithm under different input condition

and variable initialization.

(a) Performance of the algorithm under noisy 3D initialization for the reference frame: This experiment is conducted to
study the sensitivity of the method to noisy initialization. Fig. (3(a)) show the change in the 3D reconstruction accuracy with
the variation in the level of noise from 1% to 9%. The Gaussian noise is introduced using randn() function of MATLAB and
the result is documented for example(2.2) after repeating the experiment 10 times and taking its average value. We observe
that algorithm can provide unsettling results when the noise becomes very large

(b) Performance of the algorithm under restricted isometry constraint (diσ) with Φarap objective function: While mini-
mizing the as rigid as possible objective function under the |d̃i−di| < diσ constraint, we restrict the convergence trust region
of the optimization. This constraint makes the algorithm works extremely well —both in terms of timing and accuracy, if
the prior knowledge about the deformation that the scene may undergo is known a priori. Fig. (3(b)) show the reconstruction
accuracy as a function of diσ . Clearly, if we have the the approximate knowledge about the scene scene transformation,
we can get high accuracy in less computation time. See Fig: (4(b)) which illustrates the quick convergence by using this
constraint under proper the values of diσ .

(c) Nature of convergence of the proposed as rigid as possible optimization

• Without restricted isometry constraint: As rigid as possible minimization Φarap under the constraint d̃i > 0 is a good
enough constraint to provide acceptable results. However, it may take considerable number of iteration to do so.
Fig. (4(a)) show the convergence curve

• With restricted isometry constraint: Employing the approximate bound on the deformation that the scene may undergo
in the next time instance can help fast convergence with similar accuracy. Fig. (4(b)) show that the same accuracy can
be achieved in 60 iteration.
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