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Abstract

In the supplementary material, we provide a detailed
derivation of each sub-problems in the formulation. Be-
sides this, we also provide insight into convergence curve
and effect of noisy track features on the performance of our
algorithm.

1. Sub-problem derivation of the involved opti-
mization

minimize
C,S,S]

1

2
‖W− RS‖2F + λ1‖C‖1 + λ2‖CD‖1 + λ3‖S]‖∗

subject to:

S] = g(S), S = SC, 1T C = 1T ,diag(C) = 0.
(1)

To further decouple the constraint, we introduce an aux-
iliary variable E = CD. With these operations, the optimiza-
tion problem Eq.-(1) can be reformulated as:

minimize
E,S,S],C

1

2
‖W− RS‖2F + λ1‖E‖1 + λ2‖S]‖∗

subject to:

S] = g(S), S = SC, CD = E, 1T C = 1T ,diag(C) = 0.

(2)

The Augmented Lagrangian formulation for Eq.-(2) is:

L(S, S], C, E, {Yi}4i=1) =
1

2
‖W− RS‖2F + λ1‖E‖1+

λ2‖S]‖∗+ < Y1, S
] − g(S) > +

β

2
‖S] − g(S)‖2F+

< Y2, S− SC > +
β

2
‖S− SC‖2F+ < Y3, CD− E > +

β

2
‖CD− E‖2F+ < Y4, 1

T C− 1T > +
β

2
‖1T C− 1T ‖2F .

1.0.1 The solution of S:

S = arg minS
1
2‖W− RS‖2F+ < Y1, S

] − g(S) > +
β
2 ‖S

] − g(S)‖2F+ < Y2, S− SC > +
β
2 ‖S− SC‖2F .

(3)
The sub-problem for S reaches a least squares problem.

The closed-form solution of S can be derived as:
1
β (RT R + βI)S + S(I− C)(I− CT ) = 1

βR
T W+

(g−1(S]) + g−1(Y1)
β − Y2

β (I− CT )),
(4)

which is a Sylvester equation.

1.0.2 The solution of S]:

S] = arg min
S]

λ2‖S]‖∗+ < Y1, S
]−g(S) > +

β

2
‖S]−g(S)‖2F

(5)
A close-form solution exists for this sub-problem.

Let’s define the soft-thresholding operation as Sτ [x] =
sign(x) max(|x| − τ, 0). The optimal solution to Eq.-(5)
can be obtained as:

S] = USλ2/β(Σ)V, (6)

where [U,Σ, V] = svd(g(S)− Y1/β).

1.0.3 The solution of E:

E = arg min
E
λ1‖E‖1+ < Y3, CD−E > +

β

2
‖CD−E‖2F , (7)

A close-form solution exists for this sub-problem by us-
ing element-wise shrinkage.

E = Sλ1/β(CD +
Y3

β
). (8)

1.0.4 The solution of C:

C = arg minC < Y2, S− SC > +β
2 ‖S− SC‖2F+

< Y3, CD− E > +β
2 ‖CD− E‖2F+ < Y4, 1

T C− 1T > +
β
2 ‖1

T C− 1T ‖2F .
(9)
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Figure 1: Typical convergence curves of the objective function and the primal residuals ‖S] − g(S)‖∞, ‖S − SC‖∞, ‖CD − E‖∞ and
‖1T C− 1T ‖∞. The above plot shows the convergence statistics for Dance+Yoga Sequence. *ADMM Convergence Curve = maximum of
(‖S] − g(S)‖∞, ‖S− SC‖∞, ‖CD− E‖∞ and ‖1T C− 1T ‖∞).

Figure 2: Left: 3D Reconstruction error VS noise levels; Right: non-rigid motion segmentation error VS noise levels.

The closed-form solution of C is derived as:

(ST S + 11T )C + C(DDT ) = ST S + ST Y2
β + EDT−

Y3
DT

β + 11T − 1 Y4
β .

(10)

C = C− diag(C), (11)

Finally, the Lagrange multipliers {Yi}4i=1 and β are up-
dated as:

Y1 = Y1 + β(S] − g(S)), Y2 = Y2 + β(S− SC), (12)

Y3 = Y3 + β(CD− E), Y4 = Y4 + β(1T C− 1T ), (13)

β = min(βm, ρβ), (14)

1.1. Experiment: Convergence

In this experiment, we would like to study the conver-
gence of our algorithm. Given noise free input, we want
to check whether or not our proposed algorithm converge;
and if it does converge, whether it converges to the correct



Figure 3: Obtained Affinity Matrix A = |C|+|CT |. a) Affinity ma-
trix from SSC; b) Affinity matrix from our Method. Best Viewed
on Screen.

solution. Note that we use the sparse sequences from the
CMU MoCap dataset [1] directly without any dimension
reduction or projection. Typical convergence curves of the
objective function and the primal residuals are illustrated in
Fig. 1.

1.2. Experiment: Performance on noisy feature
tracks

In the second experiment, we conducted analysis to the
performance of our method under different level of noise.
In the same manner as above, we generated multi-body non-
rigid sequences (“Dance + Yoga”, “Face + Pickup”, “Face
+ Yoga”, “Shark + Stretch”, “Shark + Yoga”, “Stretch +
Yoga” and “Walking + Yoga”), then zero-mean Gaussian
noise with standard deviation σ were added to the feature
tracks. For each noisy input, we ran our code for 5 times and
recorded the mean 3D reconstruction error and non-rigid

motion segmentation error.
In Fig. 2, we illustrated the statistical results of 3D

non-rigid reconstruction and non-rigid motion segmenta-
tion. From the figures, we conclude that both the 3D recon-
struction error and the motion segmentation error increases
with the increase of noise level. Our 3D reconstruction
based non-rigid motion segmentation achieves smaller mo-
tion segmentation error compared with 2D trajectory based
motion segmentation methods such as sparse subspace clus-
tering (SSC) [2] and efficient dense subspace clustering
(EDSC) [3].

1.3. Affinity Matrix Comparison

In Fig. 3, we compare the affinity matrices from SSC
[2] and our method. It is clear that our method outputs an
affinity matrix with better structure, which results in better
non-rigid motion segmentation performance.
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