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Abstract— Small obstacles of the order of 0.5− 3cms and
homogeneous scenes often pose a problem for indoor mobile
robots. These obstacles cannot be clearly distinguished even
with the state of the art depth sensors or laser range finders
using existing vision based algorithms. With the advent of
sophisticated image processing algorithms like SLIC [1] and
LSD [9], it is possible to extract rich information from an image
which led us to develop a novel architecture to detect very
small obstacles on the floor using a monocular camera. This
information is further processed using a Markov Random Field
based graph cut formalism that precisely segments the floor and
detects obstacles which are extremely low. We show robust and
accurate obstacle detection and floor segmentation in diverse
environments over a large variety of objects found indoors.
In our case, low lying obstacles, changing floor patterns and
extremely homogeneous environments are properly classified
which leads to a drastic decrease in the number of obstacles
that may not be classified by existing robotic vision algorithms.

I. INTRODUCTION

Indoor environments often consist of very small obstacles
on the ground making it difficult for robots to navigate. Pro-
liferation of indoor robots has increased the need for optimal
ground segmentation and obstacle detection algorithms for
effective navigation. To perform such tasks effectively, use
of monocular vision systems is on the rise due to various
reasons including low cost, low weight, portability, legacy
of libraries, efficient process times and community support.
Extremely low lying obstacles of the order of 0.5−2cms or
those which are similar to floor appearance hinder the perfor-
mance of existing monocular vision based floor segmentation
or obstacle detection algorithms. Also, recent papers like [2]
state that such low lying obstacles or virtual planes [10] pose
a hindrance to the navigation of humanoids and other indoor
mobile robots.

Current robotic vision algorithms depend either on the
appearance of the floor or on the homography of the floor,
but both of these approaches cannot cater to solve the task of
identifying low-lying obstacles or those which share similar
appearance as the floor. Appearance based floor segmentation
models fail when the floor texture changes or the obstacle has
an extremely similar appearance as the floor (fig 3). Also,
Homography models under perform when obstacles are of
the height of 0.5− 2cms which virtually appear to be the
ground plane (fig 3, 4 and 5).

We devise a novel pipeline that discovers and segments
obstacles followed by precise floor segmentation in such dif-
ficult conditions as mentioned above. On careful observation,
it is found that is desirable to get a rough segmentation of the
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Fig. 1. (a) Very low lying obstacles of the order of 0.5cms are segmented
out. (b) Highly homogeneous objects segmented out. (c) The bottom tile on
the wall has the same appearance as floor which makes it very difficult to
segment. The pillar is segmented out till the bottom precisely.

Fig. 2. (a) Very low lying obstacle of the order of 0.5cms, a battery pack.
(b) Segmented image using our algorithm. (c)The corresponding depth cloud
of the scene using a Kinect. Note that the depth image of the object is non
distinguishable from the background. (d) Depth cloud of the obstacle is
segmented out since we know the precise object boundary.

scene into its constituent elements like floor, obstacles etc.
This is achieved by SLIC Superpixelling based on [1] which
would result in division of a given scene along the edges
and contours of the floor and obstacles leading to numerous
superpixels (fig 7). In addition to this, using Robust Line
Segment Detector based on [8] we detect obstacle boundaries
in the image that enables discoveries in highly homogeneous
settings. A Markov Random Field based Graph Cut with
the superpixels as its nodes, formulated based on the ho-
mography error of the superpixels and presence of object
boundaries provides for optimal classification of scene into
obstacle and floor areas. This would prove resourceful in
extremely homogeneous environments as in fig 4 and 1(c)
where there is dearth of key points for efficient homography
estimation.

We show results in several challenging scenarios where
there are extremely low lying obstacles as in fig 1(a), (b)
and homogeneous environments like 1(b), (c) where existing
algorithms under perform. In addition to being robust to
changes in floor appearance, our pipeline is clearly able
to segment out a large number of small obstacles like



Fig. 3. Results when compared to the performance of Homography and
Appearance models. (a) Has a patch that is not detected since it is not
similar to the appearance of surrounding floor. (b) Right most image:
Has a box which is similar in appearance to the floor. (c) Appearance
approach misclassifies a part of floor obstacle due to different appearance.
(d) Appearance model misclassifies the obstacle as floor due to similar
appearance. (e) Homography model classifies the floor even if appearance
changes. (f) Homography model fails when there is a low lying obstacle
on the floor. (g) Our approach segments the floor when there is change
in appearance. (h) Both the low lying obstacles and the floor which has a
different appearance are precisely segmented out.

cups, boxes, small balls, bottles, bottle lids, etc. (Table I
and II), that are commonly found in indoor environments.
Obstacles of the height of about 0.5−3cms such as a battery
pack, a very small box, a pen, small ball or a carpet are
distinguished from the floor area. Also, drastic changes in the
floor texture and appearance do not affect the performance
of our algorithm.

It could be difficult for depth sensors such as Laser Range
Finders and Kinect to detect very low lying obstacles based
on depth values alone. This can be seen in the depth image of
fig 2(c) where the battery pack is hardly distinguishable from
the background floor. Discovery of such obstacles (fig 2)
helps in precisely segmenting out the depth cloud pertaining
to them for further uses, which is an added advantage of this
algorithm.

II. RELATED WORKS

While obstacle detection shares close ties with segmenta-
tion based systems there are indeed prominent differences.
Traditional appearance based segmentations could assign
different labels to same floor area as appearance changes
while end up giving the same floor label to obstacle regions
due to strong appearance relationships with floor. Fig 3
depicts the two situations. In fig 3(c) appearance based
approaches such as [4] segment the floor area into multiple
parts due to changes in appearance, in fig 3(d), the algorithms
fuse non floor parts into floor due to similarity in appearance
for the image fed from right. Homography based solutions
do alleviate a reasonable part of the above problem (fig 3(e))
but are not capable of discerning low lying obstacles (figs 5
and 3(f)).

The problem was first posed in [10] where the author
summarizes the difficulty as virtual plane problem where
homography solutions are not able to discern obstacles of
small heights close to floor. This is depicted in fig 3(f),
wherein homography based solutions are unable to segment
low lying obstacles. The figure also shows the advantages

Fig. 4. (a) A highly homogeneous scene. Dearth of key points for
homography estimators since a part of the floor tile merges into wall and is
similar to the floor. (b) Vertical line segments detected on the pillar pillar
help in detecting it as obstacle (section III-C). (c) Pure homography based
result. Considerable part of the wall detected as floor. (d) Current method
discerns the bottom tile on the wall clearly.

Fig. 5. (a) Extremely low lying obstacles of the height 0.5− 3cms (b)
Traditional homography algorithms cannot distinguish them from floor (c)
Result of our algorithm. Low lying obstacles are clearly distinguished.

of the proposed method in fig 4(d), 5(c) and 3(g), (h). Also
fig 6 shows the homography error models for floor and non
floor regions which looks very similar at low heights, shown
by the blue for floor areas and orange for non floor areas. It
can be seen that it is very difficult to detect obstacles of very
low height purely based on homography. There has been a
fair mix of papers that have combined geometry and vision
such as [6], [3], [7]. However these efforts do not address
the problem of segmenting out obstacle regions from floors
and do not show results on very small obstacles.

Specifically [6] combined appearance and homography
cues in a Bayes Filter formulation to detect low lying
obstacles. While effective detection of such obstacles were
obtained, the results were hinged to the assumption that
appearance of floor regions were repetitive while that of the
low obstacles were not. The current formulation does not
make any such assumptions about the appearance of floor and
non floor regions, grounding its efficacy on purely geometric
principles.

Fig. 6. Homography errors at different height are illustrated. Evidently, it is
difficult to detect obstacles of very low height purely based on homography.



Fig. 7. (a) Extremely low lying obstacles. (b) Points corresponding to a
single object clustered into either a single superpixel or a maximum of two.

III. OUR APPROACH

Our approach stems from the understanding that effec-
tive segmentation is possible by not considering temporal
relations between tracked pixels but also due to relations
that such pixels share with neighbors. Also, it is well known
that graphical models developed over a group of pixels that
share similar properties is computationally more viable than
developing it over individual pixels. These considerations
resulted in the pipeline we propose. What could greatly help
in this regard is to group the image into different constituent
elements which capture local features (fig 7).

The pipeline consists of three principal modules that en-
able such robust discoveries. Firstly SLIC superpixelling [1]
is used in a way that the boundary of the superpixel coincides
with the boundary of the small low obstacles. This enables
isolating an area where the homography error terms appear
distinct with respect to surrounding floor regions despite
being at very low height. Fig 1 shows how homography
based error terms combined with a graph cut provides for
robust segmentation of obstacles at 0.5−3cms height. Such
precise contouring of obstacles however is not possible
when the obstacle and floor areas have extremely similar
appearance (fig 4). For this we use state of the art LSD, the
second module to develop error terms based on line segment
features. Finally homography and segment based error terms
are dovetailed into an MRF framework, the third module to
provide for robust discovery of both low and homogeneous
obstacles.
A. Pipeline

(Illustrated graphically in fig 8)
1) The first step of the algorithm is to estimate the ground

plane homography H between two images In and In−1
using the traditional method of detecting key points
and tracking them in two corresponding images (fig
8(a)).

2) Further, image In is subjected to SLIC (fig 8(b)) based
on [1] to produce a new image Spn which contains
clusters of pixels called superpixels as seen in fig
7. The boundaries of these superpixels are generally
aligned to those of the obstacles present in the image.
A homogeneous environment would produce regular
superpixels over the space (handled in the next point).
III-B describes the role of superpixelling module in a
detailed manner.

3) The same image In is subjected to Line Segment De-
tection(LSD) (fig 8(c)) based on [9] which would lead

to detection of numerous line segments that constitute
the scene (fig 9(b)). In all of these, the lines that
are corresponding to the obstacles are of importance
and are filtered as explained in section III-C. Now we
have an image Lsn (9(d)) which would consist of line
segments pertaining to obstacles at various positions.
The implications of using LSD and the process of
selection of particular lines pertaining to objects is
clearly detailed in III-C.

4) A Markov Random field is formulated with its nodes
as the superpixels previously obtained. The energy
of a node is determined by two factors. One is the
homography error averaged over all the feature tracks
within the superpixel Spn (fig 8(d)), the other is the
presence and deviation of an obstacle line in the Lsn
at the corresponding position of the superpixel Sp in
Spn. The combined energy of the MRF is minimized
using Graph Cut using the standard implementation by
Kolmogorov [5] subject to fulfilling the sub modularity
criteria. And hence we label each of the superpixels in
Spn either as floor or as an obstacle as seen in fig 1(a),
(b).

B. Superpixelling
Superpixelling using SLIC [1] can decompose an image

into small clusters and the separation takes place at the
boundaries of the constituent elements as seen in fig 7, 8(e).
It is observed that pixels corresponding to small obstacles are
clustered into a single superpixel which might ocassionally
extend to two. Since we are formulating an MRF over the
superpixels, we can use the consolidated homography error
over all the tracked pixels of the superpixel (fig 8(d)) and
use it in an efficient way for a graph cut which other wise
will not prove fruitful in case only the pixels are considered.
However SLIC superpixelling has a shortcoming. In case
of extremely homogeneous environments, there are no clear
boundaries among the floor and non floor regions. In such a
case SLIC would produce regular, homogeneous superpixels
which would not cater the need here. Section III-C tackles
such issues.

C. Detection of line segments of obstacles
Extremely homogeneous environments (fig 4) deprive the

homography estimators of key points which means an ac-
curate homography for the floor cannot be calculated. We
use LSD based on [9] which completely breaks down the
image In into its numerous constituent line segments (fig
9(b)) . Even in extremeny homogeneous environments, we
observe that LSD clearly detects the line segments pertaining
to obstacles. But added to these, there are other lines that are
present. Obstacle lines that are near vertical as seen in fig 9(c)
can be clearly detected. This is done by a two stage filtering.
In the first stage, we eliminate all the lines that are not near
vertical using a threshold of the angle they make with the
horizontal. This leaves us with an image I′n (fig 9(c)) with two
kinds of lines. Obstacles lines which are vertical and floor
lines of the similar kind. A warp of I′n is considered in top
view. An obstacle line would show significant deviation from



Fig. 8. The algorithm pipeline is illustrated.

Fig. 9. (a) A homogeneous scene where the step is the of the same color as the floor is, making it difficult for traditional algorithms to segment it out.
(b) Lines pertaining to different obstacles (the step, pillar beside, etc.) are detected. (c) Near vertical lines are selected for further stages. As it can be seen,
all the lines of the floor are dropped. (d) A warp of the scene to the top view is computed. Lines pertaining to the obstacle, in this case the step have a
substantial deviation from the vertical, after the warp. These add potential to the corresponding superpixels. (e) The whole step is clearly segmented out
by our algorithm.

the vertical line in the top view. While typically a floor line
that appeared vertical in the perspective view would retain
its verticality in the top down view. This holds as long as
the camera only yaws but does not pitch or roll. For indoor
planar environments this is an obvious situation (fig 9(d)).
This warped image is further filtered for lines which have
such substantial deviation. In the end, we get lines which are
of the obstacles. So even in case of homogeneous scenes,
we are able to extract information regarding the obstacles
through lines if not through superpixelling and homography.
We use these lines to serve in determining the energy of
the corresponding superpixel in Spn. The presence of an
obstacles vertical line in an area would accordingly increase
the energy of the corresponding superpixel and hence the
corresponding node in MRF. Fig 4(b) has lines pertaining
to the pillar which is an obstacle. The lines contribute to
the energy of the corresponding super pixels in Spn and
hence act as subtle discriminators in case of homogeneous
environments. There might be cases where the lines on floor
might seep in at the end as well but because the floor
homography is satisfied by them, they would be classified
as floor finally.
D. Homography : Bootstrapping and further stages

The first initial estimate of the homography between I2 and
I1 is done by a bootstrap process. A trapezoidal area on the
floor which does not constitute an obstacle is selected and
the homography is estimated. It is expected that clear floor
is available for homography estimation in the boot strapping
process. After the pipeline produces a segmented image of
I2 we have the actual floor area and hence we would be able
to compute the floor homography between I2 and I3. This
homography would be used to process I3. And hence the

frames In−1 and In are used to compute the floor homography
which would be used to process In.

E. The Markov Random Field Model
A Markov Random Field (MRF) is an undirected prob-

abilistic graphical model to encode conditional dependen-
cies among random variables. We pose our problem of
segmenting small obstacles and floor in image in an MRF
framework, and define an energy (cost) function such that its
minimum corresponds to the target segmented image. In this
framework, we represent superpixels of image as nodes in a
Markov Random Field and associate a unary and pairwise
cost of labeling these superpixels. We then solve the problem
in an energy minimization framework where an MRF energy
function ψ of following form is defined:

ψ(x,θ ,ξ ) = ∑
i

ψi(xi,θi,ξH )+ ∑
(i, j)∈N

ψi j(xi,x j ,ξH ). (1)

In Equation 1 ψi(·) represents unary term associated with
ith super-pixel and ψi j(·, ·) represent the smoothness term de-
fined over neighborhood system N . Here x = {x1,x2, ...,xn}
is the set of random variables corresponding to superpixels
of image. Each of these random variables xi takes a label xi
∈ 0,1 based on whether it is a floor or obstacle.

Each super-pixel is checked for vertical lines pertaining to
the obstacle. If the vertical line is found in super-pixel, the
change in angle with vertical axis by that edge in warped
image is computed. For the ith super-pixel this angle is
denoted as θi. If a super-pixel does not contain a vertical edge
then its contribution to the unary term of 2 becomes zero. If
ξH is the homography error associated with the super-pixel,
then the unary term can be defined as,

ψi(xi,θi,ξH ) = (ξ 2
H +λ1.θi).(1− xi)+(ξ 2

H ).xi (2)



Here ξH is the average homography error in associated
with each of the super-pixel using KLT feature detector and
optical flow. λ1 is a constant. For smoothness term we use
Potts model, defined as follows,

ψi j(x,ξH ) = λ2. ∑
(i, j)εN

(ξHi−ξH j)
2, i f xi 6= x j . (3)

where λ2 determines the degree of smoothness. The
smoothness term is added only if the neighbouring superpixel
has a different label. Once unary and pairwise terms are
defined, problem of segmenting small obstacles and floor is
now to find the global minima of the energy function defined
in Equation 1, i.e.,

x∗= argminxψ(x,θ ,ξ ) (4)

The global minima of this energy function can be ef-
ficiently computed by graph cut. For this we construct a
weighted graph G = (V,E) where each vertex corresponds
to an image super-pixel, and edges link adjacent superpixels.
Two additional special vertices source (S) and target (T ) are
added to the graph. We then connect all the other vertices to
them with weighted edges. The weights of edges are defined
using definitions of unary and pairwise terms. The min cut
of this graph corresponds to the global minima of the energy
function. We use publicly available efficient implementation
by Kolmogorov and Zabih et al. [5] for finding min cut of
this graph.

IV. RESULTS
Here we show the performance of the algorithm in various

challenging scenarios. In all of the cases, the algorithm
reliably detects and segments out the floor, demonstrating
its robustness and adaptability. The challenges include the
presence of small low lying obstacles, homogeneous floor
and non floor regions, highly textured floor. Also, apart from
different kinds of floor patterns, our method also faithfully
segments out obstacles that are not necessarily regular/planar
in shape. These obstacles include a ball, a bottle, an amigo
bot etc. A vast range of indoor objects having various
shapes and sizes are efficiently detected. These include small
battery packs, low lying boxes, books, balls, marker pens etc.
Following is the summary of the performance.

A. Small low lying obstacle detection
Obstacles in indoor environments exist in different shapes,

sizes and textures. While an obstacle may be homogeneous to
the floor which would not be detected by appearance models,
another may be a very low lying one which blindfolds
homography models and poses problems for indoor robots.
This section summarizes the results where various kinds of
such obstacles are precisely segmented. Essentially, since the
obstacles come up in one or two superpixels, the homography
error over the superpixel is consolidated over the whole
superpixel which is a node in the MRF. And hence the graph
cut makes a clear distinction between the obstacle and the
floor. We show promising results in various scenarios where
obstacles of different kinds are detected precisely. Table I
shows the heights and related figures of different obstacles
that are detected and the corresponding images. As we pass

Fig. 10. (a) A general situation where obstacles of considerable height are
present. The pipeline faithfully segments out the obstacles. (b) The height
of the obstacles is now decreased. Small balls and boxes are segmented
out. (c) A wooden plank 2cm in height is segmented out. (d) Guitar fret is
segmented.

Fig. 11. General indoor objects are segmented faithfully.

on to subsequent images, height and size of the obstacles
keeps decreasing, making it more and more complex for the
algorithm and yet, the pipeline performs faithfully.

TABLE I
HEIGHTS OF DIFFERENT OBSTACLES DETECTED

Object/Obstacle Height(cm) Figure
Pen 0.6 13(a)-(a1)

Pepper Mint Box 0.7 12(a)-(a2)
Transistor Battery Pack 1.5 12(a)-(a1)

Multimeter 1.8 11(b)-(b1)
Laptop Battery Pack 1.8 11(b)-(b2)

Wooden Plank 2 10(c)
Water Color Bottle 3 12(a)-(a3)

Mosquito Repellant Case 3.5 figure 12(a)(a4)
A ball 6 10(b)

B. Extremely homogeneous obstacles
As discussed earlier, when extremely homogeneous ob-

stacles are present, it is generally difficult to make a good
estimate of homography. In such a case if there are vertical
lines present on the obstacle, they would rescue the per-
formance of the algorithm. In fig 4(c), it can be seen that
normal homographic methods or appearance methods would
fail in such a case where the floor appears to merge into
the pillar. In such a situation, the vertical lines present on
the pillar, that are detected by LSD would add potential to
the energy of the corresponding superpixel in Spn and hence
they are clearly distinguishable. Also fig 9 shows that the
step which is homogeneous as well as low lying is clearly
segmented by our algorithm. This is because of the line



Fig. 12. (a) Objects like battery pack(a1), a peppermint box(a2), water color
box(a3), mosquito repellant(a4) are accurately segmented. (b) Extremely low
lying homogeneous objects are segmented.

Fig. 13. (a) A pen is precisely classified as an object (b) A notebook which
is very low lying is classified as object.

segments that are detected on the step, which add potential to
the corresponding superpixel node. What could be a potential
threat to robots in such case is easily handled by our pipeline.
We are also able to segment out low lying homogeneous
obstacles on the floor faithfully (fig 12(b), (d)). This could be
a tough job for traditional homography or appearance based
approaches. Table II gives the height of the homogeneous
obstacles and their images.

TABLE II
HEIGHTS OF DIFFERENT HOMOGENEOUS OBSTACLES DETECTED

Object/Obstacle Height(cm) Figure
Remote Control 0.8 12(b)-(b2)

A Notebook 1.5 13(b)-(b2)
Business Card Box 2 12(b)-(b6)

Small Wheel 2 12(b)-(b5)
Duster 3 12(b)-(b3)

A mesh of wire 3 12(b)-(b1)

C. Change in texture
Often, the texture of the floor that the robot is traversing

on keeps changing. In such cases, the algorithm must be
robust enough to sustain such changes. Fig 9 and 14 show
that the algorithm can efficiently perform even in such cases.
Also, in fig 14 it can be seen that there are numerous lines
detected in the floor due to the LSD. It might appear that
the lines might deceive the algorithm of being associated
with obstacle. But this does not happen since all of them
are filtered off as specified in III-C, fig 9. In a case where
there is a line segment which seeps in after all the process,
the superpixel Sp which belongs to the floor would have
negligible homography error. And hence a meager potential

Fig. 14. A Highly textured floor is presented to the pipeline. Despite
change in floor texture, the algorithm clearly segments out the floor. The
lower part of the LSD image presents a lot of lines in various orientations.
Despite their presence, the algorithm segments out the floor faithfully.

Fig. 15. (a) A 3D painting which could be deceptive to the human eye.
The buildings in the front are drawings on the floor and not obstacles.
Since all of it is on a plane, it should be segmented out as floor. (b)
Numerous line segments, some of which are vertical on the floor might
deceive the algorithm that there is an object there. But since the superpixels
corresponding to those areas satisfy the homography, the potential of that
superpixel node in MRF is quite low. Thus presence of vertical lines on the
floor would not degrade the performance of the pipeline. (c) The whole of
the floor is classified faithfully as expected.

addition by the line in such a case would not make a
difference (fig 14). We present an interesting case of a 3D
painting (fig 15) which generally deceives the human eye as
though obstacles are present in the scene. Here the buildings
in the front are actually drawings on the floor giving an
illusion of standing on the floor. These need to be detected as
floor while people behind ought to be classified as obstacles.
Also, numerous number of line segments that pertain to the
apparent obstacles in the painting might as well deceive the
algorithm. But this does not happen. As mentioned earlier,
the superpixels satisfy the homography in a clear manner and
hence the potential that the lines add to the floor would not
affect the performance. This we believe is a convincing case
for our algorithm in that it is not in any ways confused by
the deceiving segments.

D. Depth map segmentation : Consequent application
Laser Range Finders or RGB-Depth cameras like Kinect

provide us with the depth data of the scene. In such a point
cloud, small obstacles of 0.5− 3cms in height would pose
difficulty in segmenting out the depth points corresponding
to them. Our algorithm provides for precise segmentation of
the point cloud of such small obstacles. Since we have an
accurate segmentation of small objects in the scene, we can
select the corresponding area in the depth cloud of the scene
to obtain the depth details of the object. fig 16 shows the
result.

E. Discussion on results
From the results, it can be seen that efficient and precise

segmentation of small obstacles is achieved. Below, we



Fig. 16. (a) Very low lying obstacles: a ball, a battery pack. (b) Segmented
image using our algorithm. (c)The corresponding depth cloud of the scene
using a Kinect. (d) Depth cloud of the obstacle is segmented out since we
know the precise object boundary.

Fig. 17. (a) The pipe, across the image and the the base of the chair are
low lying and long. (b) Long obstacles are clearly segmented out.

present a discussion on how different modules contribute to
the efficacy of the pipeline.

1) Superpixelling: As discussed earlier (III-B), superpix-
elling segments out the whole image into its constituent
elements along their borders. Since we have the obstacles
in superpixels, considering the overall homography error of
a superpixel using its constituent tracked pixels substantially
helps in precisely segmenting the obstacle using the MRF-
Graph Cut formulation. In such cases, the obstacle is clearly
segmented out despite the presence of a vertical line on them.
The role of a line is discussed below.

2) Lines and detected line segments: In any given case,
there are numerous line segments present in a given scene.
Every node of the Markov Random Field is built by the
potential contributed by homography error of the superpixel
and the presence of a line. But the line essentially contributes
in cases where there is extreme homogeneity. Homogeneous
cases as seen in fig 4 and 9 pose problems in estimating
the homography due dearth of key points. It can be seen
that the floor apparently merges into the pillar (fig 4) and
the step (fig 9). In such cases the vertical line segments of
obstacles that are detected (described in III-C) in the scene
come to the rescue. Line segments detected in section III-C
(fig 9) add potential to the corresponding superpixel node
and hence a clear distinction can be made in the Graph Cut
process. It might some times appear that the lines present
on the floor could deceive the algorithm of being associated
with an obstacle. But the strict two stage filtering described
in III-C helps in selecting only the vertical and near vertical
lines of obstacles. If in case there is a floor line which
seeps in through both the filters, the homography error of
the superpixel of that corresponding line is extremely low,
and hence it would be labeled as floor by the Graph Cut
process. This can be seen in fig 14 and 15.

3) Purely homogeneous scenes: Further, there could be
cases where the whole environment is so homogeneous that
the Line Segment Detector is not able to detect near vertical

lines of the obstacles. Such cases we believe are very rare and
there are no current algorithms which cater to such problems.

4) Long Obstacles and Rotation: When an obstacle is
long it provides no segment like features. However since
the contours of superpixel coincide with the obstacle, ho-
mography error terms provide sufficient potential for object
discovery despite lack of segment terms (fig 17). If rotations
are abrupt, trackers tend to provide wrong correspondences.
A wrong homography estimate can produce less than optimal
performance. However if the rotation is smooth and not
abrupt, the algorithm continues to do the needful.

V. CONCLUSIONS
We present an efficient algorithm for segmenting out

extremely low lying obstacles just by using a monocular
camera. In addition, extremely homogeneous environments
where the obstacles appear to merge with the floor are
dealt in an efficient manner. Consequently, this paper leads
to a drastic increase in the kind of obstacles that can be
detected by present obstacle detection and floor segmentation
algorithms. In a homogeneous environment, a robot might
ram into a non floor region (fig 4(b)) in case the pillar is
not segmented out properly. Also, a humanoid might topple
in case there are small obstacles lying on the floor (fig 12).
This paper alleviates such issues and a considerable number
of problems that are generally faced by current algorithms.
Apart from the issues it addresses, the pipeline could be used
for further applications to precisely collect the point cloud
data, better navigation and path planning, etc.
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